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Abstract
The fast-growing adoption of technologies based on Machine Learning (ML), in
addition to the large scale at which they operate, makes them a potential source
of systematic discrimination against disadvantaged social groups. This thesis is
framed within the topic of Algorithmic Fairness, which aims at detecting, charac-
terizing and mitigating those inequalities replicated, amplified or created by such
autonomous systems. The wide range of domains where ML systems are being in-
corporated drives the multidisciplinarity of this work, with contributions in fields
as varied as social sciences in the study of Artificial Intelligence (AI), detection of
mental health disorders or the real state market. At the same time, it contributes to
different stages of the ML life-cycle, facilitating the creation of fairer ML-based
systems. With the outcomes of this thesis, we expect to contribute to the further
development of tools and mechanisms to assist practitioners into incorporating
Algorithmic Fairness.

Keywords: Algorithmic Fairness, Machine Learning, Discrimination, Algo-
rithmic Assessment.

Resumen
La rápida adopción de tecnologías basadas en Aprendizaje Automático (ML según
sus siglas en inglés), en adición a la larga escala a la que estos sistemas operan,
los convierte en una fuente potencial de discriminación sistemática en contra de
los grupos sociales más desfavorecidos. Esta tesis se enmarca dentro del cam-
po de Justicia Algorítmica, que estudia la detección, caracterización y mitigación
de desigualdades replicadas, amplificadas o creadas por sistemas automáticos.El
amplio rango de dominios en los que se están incorporando sistemas basados en
Aprendizaje Automático conlleva la multidisciplinaridad de este trabajo, con con-
tribuciones al estado del arte de campos de la investigación tan variados como el
estudio de la Inteligencia Artificial (AI) desde el campo de las ciencias sociales,
la detección de problemas de salud mental o plataformas online que operan en el
mercado inmobiliario. Al mismo tiempo, contribuye a distintas etapas del ciclo
de vida de los modelos de Aprendizaje Automático, buscando facilitar la creación
de modelos más justos. Con los resultados de esta tesis, esperamos contribuir al
desarrollo de herramientas y mecanismos que permitan asistir a los profesionales
a incorporar Justicia Algorítmica en sus desarrollos e investigaciones.

Palabras clave: Justicia Algorítmica, Aprendizaje automático, Discrimina-
ción, Evaluación Algorítmica.

vii



“output” — 2022/6/24 — 14:52 — page viii — #8

Resum
La ràpida adopció de tecnologies basades en Aprenentatge Automàtic (ML se-
gons les sigles en anglès), en addició a la llarga escala a què aquests sistemes
operen, els converteix en una font potencial de discriminació sistemàtica en con-
tra dels grups socials més desafavorits. Aquesta tesi s’emmarca dins del camp de
Justícia Algorítmica, que estudia la detecció, caracterització i mitigació de desi-
gualtats replicades, amplificades o creades per sistemes automàtics. L’ampli rang
de dominis en què s’estan incorporant sistemes basats en Aprenentatge Automà-
tic comporta la multidisciplinaritat d’aquest treball, amb contribucions a l’estat
de l’art de camps de recerca tan variats com l’estudi de la Intel·ligència Artificial
(AI) des del camp de les ciències socials, la detecció de problemes de salut mental
o plataformes en línia que operen al mercat immobiliari. Alhora, contribueix a
diferents etapes del cicle de vida dels models d’aprenentatge automàtic, buscant
facilitar la creació de models més justos. Amb els resultats d’aquesta tesi, es-
perem contribuir al desenvolupament d’eines i mecanismes que permetin assistir
els professionals a incorporar Justícia Algorítmica als seus desenvolupaments i
investigacions.

Paraules clau: Justícia Algorísmica, Aprenentatge Automàtic, Discriminació,
Avaluació Algorísmica.
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Chapter 1

INTRODUCTION

In recent years, we have witnessed unprecedented improvements in the automa-
tion of a broad range of processes that impact our daily life thanks to the appli-
cation of Artificial Intelligence (AI) and, in particular, the adoption of Machine
Learning (ML) techniques. This causes that an increasing number of decisions
regarding human beings’ daily routines take place in partially automated envi-
ronments, what imposes that their lives and fundamental rights are often directly
or indirectly affected by the functioning of such quasi-autonomous systems. Al-
though these systems may bring innumerable benefits, their use also implies in-
herent risks, such as codifying biases or a reduction of accountability on their de-
cisions. From the perspective of the academic world, the majority of the research
around the field of AI is concentrated on how to build more precise, reliable and
advanced models, while fewer researchers have focused on the impact and unin-
tended harms such systems might create. In this context, the Fairness, Account-
ability and Transparency (FAccT) community (and its predecessors FATML and
FAT*) were born in the mid 2000s and early 2010s with the objective of studying
the inequalities occurring in specially concerning applications. Examples of such
applications are, as stated by the General Data Protection Regulation (GDPR) 1 in
its article 22, cases where the predictions produce legal effects. Similarly, the AI
Act2 defines "High Risk" applications as such systems that pose significant risks
to the health and safety or fundamental rights of persons. The object of study of
this work are then those scenarios where decisions that are directly or indirectly
affecting human beings and their fundamental rights are taken or assisted by au-
tomated systems, with a special interest on the protection of social disadvantaged
groups.

1https://gdpr.eu/
2https://artificialintelligenceact.eu/
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1.1 Motivation
ML systems tend to exhibit important disparities of performance across demo-
graphic groups. This is often caused by biases present in the input data that is
used to train such systems, which reflects historical stereotypes and prejudices
while also tends to contain fewer examples about social minorities, leading to
lower performance for such groups.

Before the wide spread of Algorithmic Fairness research, a dangerous but
prevalent reasoning by ML practitioners was the idea that that ML systems were
not incurring in subjectivity or replicating social prejudices, for the reason that
they learn from objective data and features. Several cases of inequalities repli-
cated, created or amplified by AI and more in particular, ML-based systems have
been reported previously, showing that often, training data reflects social stereo-
types and prejudices between other biases.

Famous examples of how data biases affect the predictions of automated sys-
tems can be found in the case of COMPAS, a recidivism prediction tool used in the
U.S., where ProPublica identified a much higher false positive rate for black peo-
ple (see [109]); XING, a job platform that was reported to rank less qualified male
candidates higher than more qualified female candidates [120]; or the case of face
recognition online services found to suffer from achieving much lower accuracy
on females with darker skin color [40]. Other not so well-known examples on how
biases reflect on AI-based systems include the quality of education and healthcare
received [35, 101, 70, 73], news or social media people see [161, 37, 6], who
receives a job [120, 162, 178], who is released from jail [109, 52] and who is
subjected to increased policy [132, 204].

New legislation explicitly prohibits entirely automated processing with signif-
icant effects, similar to legal effects, over a person, as the article 22 of the GDPR.
Also, the U.S. Civil Rights Act [201] defines a rule setting a maximum ratio of
80% in the probability of accessing an employment for two given classes of in-
dividuals. The topic of fairness and non-discrimination has been given a special
interest in a variety of AI stakeholders.

During the past few years, the intersection between data mining, machine
learning and fairness domains has received an increasing attention by the research
community. Under the awareness of the potential social harm of automatic sys-
tems used to assist humans in decision-making procedures, researchers have pro-
posed several formulations of fairness for a variety of machine learning tasks such
as classification [111, 141, 84, 117, 202, 93, 217, 43], regression [5, 25], recom-
mendation [41, 26], ranking [48, 27, 47, 218] and natural language processing
[194, 148] between others.

Whereas most of the existing literature refers to Data Bias as the main initiator
of biases, the reasons for which data reflects biases and prejudices are often com-

2
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plex and should not be isolated from the predictive system and its environment.

Figure 1.1: Cyclic nature of bias, also known as vicious cycle of bias or second
order bias

Figure 1.1 describes the general framework we propose in this thesis. Some
authors refer to similar concepts as the vicious circle of bias [203] whereas other
call this second order bias [14]. In this work, we refer about this conception as
the Cyclic nature of bias. Apart from the data itself, biases manifest during the
definition, development and assessment of the systems carried out by ML practi-
tioners. At these stages, humans might incorporate their own biases, incurring in
the so-called Professional bias. This phenomenon has been already observed by
psychologists, who reported this effect as caused by the so-called researchers de-
grees of freedom [184]. In their study proved the impact of four common degrees
of freedom: flexibility in (a)choosing among dependent variables, (b)choosing
sample size, (c)using covariates, and (d)reporting subsets of experimental condi-
tions. As an example of the effects that professional bias can cause in the system,
researchers created an experiment where twenty-nine teams with a total of 61
data-scientists took part. In the experiment, participants were all given the same
data set and prompt: Do soccer referees give more red cards to dark-skinned play-
ers than light-skinned ones? As a result, and despite analyzing the same data, the
researchers got a variety of results: twenty teams concluded that soccer referees
gave more red cards to dark-skinned players, and nine teams found no significant
relationship between skin color and red cards [10]. This type of analysis prove
that, even when executed by professionals with good indent, experiments can lead
to different conclusions, just because of the effects of their degrees of freedom.

3
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Such freedom is reflected in the set of decisions taken during the execution of the
experiments.

As a result of this process, algorithmic might inherit different types of bi-
ases that are then reflected on disparities in predictive performance. This known
as Algorithmic Bias and is the source of discrimination when the disparities of
performance systematically affect individuals with certain personal or inherited
characteristics. After, humans interact with the predictions of such potentially bi-
ased algorithms, also reflecting their own prejudices and biases. This is the case
when collecting data from social platforms [146]. This leads to a complex cycle
where biases are incorporated, if not augmented, at different stages in the process.

In this dissertation, we tackle each of the stages separately, as described in the
following section of this document.

1.1.1 Outline and contributions

We study various elements of Algorithmic Fairness with a particular focus on
the following five, which happen in different stages of the Cyclic Nature of Bias
shown in Figure 1.1.

1. We study the concept of bias in input data. For that, we show how a novel
type of poisoning attack can be used to craft new samples that once added to
the training set lead to more unfair learning model with minimal affection
of predictive accuracy.

2. The role of professional biases through the lens of Economics of Conven-
tions, a theory created by economists and sociologists that defines a tax-
onomy of normative orders of worth that are used as collective logics of
coordination and evaluation. We analyze both qualitatively and quantita-
tively AI-related data collected from Github, Semantic Scholar and Reddit
showing that the prevalence of convention varies significantly across data
sources and stakeholders (developers, researchers, general public).

3. We performed an algorithmic assessment of a collection of recommender
systems used in an application in the room rental market. Our analysis,
focused in both sides of the market (room seekers and room owners) reveal
relevant disparities in the quality of the recommendations got by different
social groups (by gender, age, spoken languages or sexual orientation).

4. We detected dangerous disparities in predictive performance when training
a ML model for classifying anorexia nervosa profiles from social networks.
We evaluated such disparities across different types of models and show

4



“output” — 2022/6/24 — 14:52 — page 5 — #27

how different repairing methods could be applied depending on the objec-
tives of the tool, proving at the same time that there is no a perfect solution
but a trade-off.

5. We studied the response of users to a decision support system (DSS). For
that, we developed an experimental platform based on an online game where
users get a DSS helping them to maximize their score. We use a crowd-
sourcing platform to recruit more than 400 participants. Our results show
different behavioral patterns that can be analyzed more in detail in further
research.

1.2 Structure of the thesis

The structure of this manuscript is divided in the following chapters:

1.2.1 Chapter 2

This chapter provides an overview of the state of the art in topics related to the
work developed during the execution of this thesis. In particular, we review pre-
vious work related to: i) Algorithmic Fairness in classification ii) Algorithmic
Fairness in two-sided markets iii) Algorithmic Auditing iv) Algorithmic Fairness
in industrial settings

1.2.2 Chapter 3

This chapter presents a study done in the context of data bias. For that, we leverage
techniques used in the field of adversarial learning, where new samples are crafted
with the objective of causing malfunctioning of the machine learning model. In
particular, we use poisoning attacks, what aims to modify input data to affect
the learned decision boundary. Using that, we propose a framework to create
new samples that increase the potential data bias present in the training set. The
obtained results show how the proposed framework can be used to amplify pre-
dictive disparities on the learned model, with minimal affection on predictive ac-
curacy and with minimal previous knowledge by the attacker. This contribution
corresponds to the first investigation done on Poisoning attacks for Algorithmic
Fairness.

The work of this chapter was published in full at: David Solans, Battista Big-
gio, Carlos Castillo: Poisoning Attacks on Algorithmic Fairness. In Proeedings
of European Conference on Machine Learning and Principles and Practice of
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Knowledge Discovery in Databases (ECML/PKDD) 2020, LNCS Volume 12457,
pp. 162-177.

1.2.3 Chapter 4
In this chapter we study how different stakeholders of AI: (i) researchers; (ii) de-
velopers; (iii) general-public use different values of worth when discussing AI. In
order to quantify this, we use the theory of Economics of Conventions [63] that
defines a taxonomy of values of worth. We gather data from Semantic Scholar,
Github and Reddit and then analyze it by using both qualitative and quantita-
tive analysis. For the quantitative analysis, we build a text classifier based on
deep-learning that classifies sentences into conventions. The obtained results out-
line important differences in prevalence of conventions across the analyzed data
sources.

The work described in this chapter was published in full at: David Solans,
Christopher Tauchmann, Aideen Farrell, Karolin Kappler, Hans-Hendrik Huber,
Carlos Castillo: Learning to Classify Morals and Conventions: Artificial Intelli-
gence in Terms of the Economics of Convention. Proceedings of the International
Conference on Social Media (ICWSM) 2021, pp. 691-702

1.2.4 Chapter 5
This chapter describes an algorithmic assessment done on a two-sided platform
used in the real-state market. In our evaluation, we compare user satisfaction
in both sides of the market with different versions of the recommender system,
revealing trade-offs causing the highly performant classifiers to lead to higher
inequalities in user satisfaction.

The work described in this chapter was published in full at: David Solans,
Francesco Fabbri, Caterina Calsamiglia, Carlos Castillo, and Francesco Bonchi.
2021. Comparing Equity and Effectiveness of Different Algorithms in an Applica-
tion for the Room Rental Market. Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society (AIES). Association for Computing Machinery, New
York, NY, USA, 978–988.

1.2.5 Chapter 6
The work described in this chapter is framed within the domain of detection of
mental health issues in social media posts. To do so, we use a dataset collected
by Ramírez-Cifuentes et al. [163] that contains positive and negative examples
gathered from twitter and labeled by professionals of psychology. Building dif-
ferent versions of machine learning model classifiers, we demonstrate how they

6
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yield disparities in predictive performance, with females having higher rates of
false negative rates. After that, we characterize the reasons for these disparities of
performance using a dataset with higher prevalence of female samples. Finally,
we use different state-of-the-art techniques to train fairer models, discussing the
potential trade-offs of each of the options in different scenarios.

The work described in this chapter is described in a manuscript at: David
Solans, Diana Ramírez-Cifuentes, Esteban Ríssola, Ana Freire. 2022. Gender
bias when using Artificial Intelligence to assess Anorexia Nervosa on Social Me-
dia. This manuscript was submitted to a Q1 Journal and is currently under review.

1.2.6 Chapter 7
In this chapter we review the results obtained from a user study. To conduct
the experiment, we first design an experimental platform consisting in an on-
line game where treatment users have a machine learning-based Decision Support
System (DSS) recommending them the best place for the next play whereas the
control group does not have any automated help. We test different conditions: (i)
levels of accuracy of the system; (ii) presence/absence of biased predictions; and
evaluate the human response to them, both implicitly in their behavior and explic-
itly through an opinion survey after the game. The results show that in general,
users are able to detect malfunctioning

The work described in this chapter is described in a manuscript at: David
Solans, Andrea Beretta, Manuel Portela, Carlos Castillo, Anna Monreale. 2022.
Human Response to an AI-Based Decision Support System: A User Study on the
Effects of Accuracy and Bias. At the time of this writing, we were planning to
submit to a CORE-A3 conference sponsored by ACM.

1.2.7 Chapter 8
We finally conclude this dissertation by summarizing and discussing the main
findings and suggesting new directions for future research.

3http://portal.core.edu.au/conf-ranks/
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Chapter 2

BACKGROUND

In this section, previous work related to the general objectives of this thesis is
outlined. For chapter, the specific state of the art is referenced in subsequent
sections of this document.

Despite this thesis referencing over 200 previous papers, it lies within an enor-
mous, multidisciplinary field that has branched in many directions, and hence
there are many more references than listed here.

Between the set of topics that could be outlined in this section, we selected
four particular topics because of their relation to the general objectives of this the-
sis. We selected Algorithmic Fairness in supervised classification for its relation
to Chapters 3 and 6 of this thesis. Additionally, supervised classification is the
subdomain in Algorithmic Fairness with higher number of contributions. After,
we review Algorithmic Fairness in two-sided markets, strongly related to Chapter
5 and a growing concern given the large scale at that platforms such as Amazon,
Spotify, Uber or Airbnb between others do operate. Then, we review the field
of Algorithmic Fairness in industrial settings, which overviews the concerns AI
practitioners have while trying to incorporate Fairness. Finally, we overview the
field of Algorithmic Auditing, that is closely related to Chapter 5 but at the same
time, will be one of the strongest interest of industrial firms, governments and
consultancies in the coming years, where the need to certify ML-based systems
might become a legal requirement 1.

1https://www.gov.uk/government/publications/findings-from-the-drcf-algorithmic-processing-
workstream-spring-2022/auditing-algorithms-the-existing-landscape-role-of-regulators-and-
future-outlook
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2.1 Algorithmic Fairness in supervised classification
Statistical biases present in data can lead to unfairness in subsequent learning
tasks. In Olteanu et al. [146], the authors describe a complete list of bias types and
the existence of feedback cycles from data origins to its collection and processing.
Researchers in Mehrabi et al. [138] created a taxonomy of biases, depending on
the application layers that are exposed to them:

• Input data biases. Typically coming from social prejudices reflected in
the data or caused by sampling biases between others. Examples of biases
reflected in the input data are Historical Bias, Representation Bias, Mea-
surement Bias or Aggregation bias

• Algorithmic Biases. Producing biases such as popularity bubbles in rec-
ommendation systems or evaluation biases. Examples of algorithmic bias
are Measurement Bias, Evaluation Bias, Ranking Bias or Popularity Bias.

• Human-Computer-Interaction biases. Reflected as behavioral biases or
presentation biases, linking biases, etc. Examples of such biases are Linking
Bias, Social Bias, Observer bias or Self-selection Bias.

The presence of such biases in any of the three layers of the system can po-
tentially lead to inequities for certain groups of individuals. In this context, the
task of quantifying inequities, named algorithmic fairness, has received a lot of at-
tention in the research community, resulting in a multitude of metrics to measure
fairness.

The existing metrics of fairness for classification fall in two categories: In-
dividual metrics and Group metrics, depending on if the goal is to require the
system to give similar predictions to individuals that are considered similar or the
objective is that the system treats groups equally.

Groups are often calculated on the basis of sensible attributes that are legally
recognized as protected classes. Examples of such classes and of their legal pro-
tection are: i) Race (Civil Rights Act of 1964) ii) Color (Civil Rights Act of 1964)
iii) Sex (Equal Pay Act of 1963; Civil Rights Act of 1964) iv) National origin (Civil
Rights Act of 1964) v) Citizenship (Immigration Reform and Control Act) vi) Age
(Age Discrimination in Employment Act of 1967) vii) Pregnancy Pregnancy Dis-
crimination Act)

Typically, individuals of such groups are divided between unprivileged and
privileged subgroups, as identified in the historical data.

In general, approaches to Algorithmic Fairness are based on a specific distri-
bution of the feature space. As indicated by Pedreschi et al. [153], this distribution
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can be expressed in the form of a contingency table that divides the features space
in terms of the groups found in the data. Groups are calculated with respect to a
protected attribute A and a target variable Y , for which some possible values are
considered more beneficial than others. Following these ideas, for the simple case
of binary classification and two groups, the feature space is divided as depicted in
Table 2.1.

benefit
denied granted

group unprivileged a b n1

privileged c d n2

m1 m2 n

Table 2.1: Contingency table. Distribution of features and samples space in algo-
rithmic fairness literature

As proposed by Hardt et al. [19], fairness functions are defined by using the
criteria of independence, separation and sufficiency depending on the final goal of
the metric.

Given X , a features vector representing individuals; A, a sensitive attribute; C,
a predictor and Y being a target variable, the stated criteria are defined as follows:

• Independence: C independent of A (C ⊥ A).
Requires that for all groups a, b and all values y, Pa(C = y) = Pb(C = y).
These criteria ignores possible correlations between Y and A.
The case of the perfect predictor (C = Y ) is in general not accepted in most
cases, where initial rates for Y values across groups are not equalized.
Also called disparate Impact in the literature [72], examples of metrics
based in these criteria are: demographic parity and statistical parity.

• Separation: C independent of A conditional on Y (C ⊥ A|Y ).
It incentives to reduce errors uniformly in all groups. The case of the perfect
predictor C = Y is allowed and corresponds to the ideal scenario. Some au-
thors [215] refer to these criteria with the name of Disparate mistreatment.
Examples of metrics based on it are: true positives ratio, false positive ra-
tio, false negative ratio that for the best case scenario should be equalized
for the obtained groups.

• Sufficiency: Y independent of A conditional on C (Y ⊥ A|C)
Also expressed as: P (Y = 1|X = x,A = a) = P (x), this metric ensures
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that even if correct label Y provides information about the protected at-
tribute A, predictions Y ′ do not provide any additional information about A.
Often measured with the Equalized odds metric, sufficiency can be achieved
by model calibration.

The impossibility theorem of satisfying any two of the three criteria at the
same time is already known. In Choulechova et al.[52] and Kleinberg et al. [114],
the authors demonstrated the unfeasibility of achieving separation and sufficiency.
The work presented by Hardt et al. [19] proves the theorem for the rest of pairs.

Even in the case of trying to create fair systems, given those theorems, de-
velopers, decision makers and society in general need to specifically decide the
metric or group of metrics to be optimized. In his genial tutorial, the author of
[144] explains shows how conflicting objectives of different stakeholders can lead
to the selection of distinct fairness metrics, demonstrating that the selection also
depends on the specific role of each user in the system.

There are different methods to ensure that fairness criteria are satisfied in clas-
sification algorithms; they can be divided into pre-processing of training data
[110, 45, 165], post-processing of the outcomes of the algorithm [93, 153], or
formulating fairness criteria as constraints or part of the objective function opti-
mized during training, i.e., in-processing [4, 215].

2.2 Algorithmic Fairness in two-sided markets
Two-sided (or more generally multi-sided) markets are defined as markets in which
one or several platforms enable interactions between end-users, and try to get the
two (or multiple) sides “on board” by appropriately charging each side. That is,
platforms court each side while attempting to make, or at least not lose, money
overall [171].

In these settings, stakeholders can be often differentiated depending on their
role in the platform. On one hand, Providers develop, create or own items/services
exposed on the platform. On the other hand, Consumers seek to acquire items/services
from the providers. Additionally, the platform itself, which intermediates and
matches providers and customers based on their preferences.

The concept of Algorithmic Fairness has been extended to address multiple
stakeholders [42, 2], with the problem becoming how to balance fairness demands
on multiple sides of the market.

• C-Fairness. Focuses in the satisfaction of consumers through the quality of
the presented results, often referred as the received utility.

• P-Fairness. Addresses the quality of the platform for producers by consid-
ering inequalities in terms of exposure.

12
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• CP-Fairness. Considers both consumers and producers’ perspectives.

The Authors of Shur et al. [192] analyze a double-sided market in the con-
text of ride hailing platforms, giving an special emphasis to the role of the riders
(producers). Additionally, Hutson et al. [104] analyze a similar setting, in their
case online dating apps, revealing different inequities based on race and/or sexual
orientation.

As an example of CP-Fairness, the authors of Patro et al. [151], addressed it
by considering individual fairness for both consumers and producers. From the
producer side, their approach aims to reduce the exposure inequality among items,
whereas and from the user-side, the authors argue that the platforms should fairly
distribute the utility among the customers.

2.3 Algorithmic Fairness in industrial settings
Due to an increasing awareness about the potential for autonomous systems to
amplify social inequities and unfairness, recent efforts on creating guidelines for
Ethical AI [147] mention the requirement of considering at least four different
aspects: (a) Algorithmic Fairness, (b) Privacy, (c) Explainability, (d) Robustness
when building autonomous systems. Also, understanding data as the main element
affecting such aspects, there have been attempts to create a standard for datasets
description [80].

However, and even after the creation of such guidelines and standards, in-
dustrial solutions are facing a set of challenges when trying to produce fairness-
aware learning algorithms by intervening at different stages of a decision-making
pipeline to produce "fair" outcomes.

In the attempt to understand industrial practitioners’ needs to assess and mit-
igate such unfairness, the authors of Holstein et al. [102] collected a set of chal-
lenges that difficult the creation of fairness-aware products. Those challenges are:

1. Fairness-aware data collection
The algorithmic fairness literature emphasizes the central role of data set
quality [209, 81]. However, enhancing the data collection to reduce repre-
sentation inequities is a complex task whose solution highly depends on the
domain.

2. Blind spots
The existence of potential blind spots which might stand in the way of ef-
fectively addressing fairness issues, or even thinking to monitor some forms
of unfairness in the first place.
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3. Need of more proactive auditing processes
With the detection of fairness issues presenting many unique auditing chal-
lenges, practitioners seems to be reactive to user complaints in contrast to
the proactive approaches for detecting potential security risks.

4. Needs for more holistic auditing methods
Most of the existing literature has focused in domains where fairness can be
at least partially understood in terms of well-defined quantitative metrics.
However, applications involving richer, complex interactions between the
user and the system reported the necessity of more holistic, system-level
auditing methods.

5. Addressing detected issues
Revealing a set of challenges and needs around debugging and remediation
of fairness issues. This includes, among others, needs to support of the
most effective strategies to address particular issues; methods to estimate
how much data is additional required for particular subgroups; processes to
anticipate potential trade-offs between fairness definitions and other model
quality metrics; and frameworks to help navigate complex ethical decisions

Aligned to these findings, recent contributions such as Cramer et al. [53] have
also framed industrial requirements in terms of the Machine Learning life cycle,
revealing areas and processed that are not being addressed from the perspective of
algorithmic fairness literature.

Figure 2.1: Algorithmic fairness contributions in terms of the Machine Learning
lifecycle

.

In concrete, as shown in Figure 2.1, the report outlines a lack of assistance
for evaluating performance in deployment, where the system potentially affects
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millions of users, specially interesting due to the impossibility of ensuring that
training data is equally representative for the whole population.

The task definition, or how to correctly define the problem that the system is
trying to solve, is also an arduous task, where defining the intended effects but
also the unintended and possible biases, together with the fairness requirements is
a clear necessity.

After, the construction of the dataset is a critical phase where biases can man-
ifest due to different reasons, as described by Baeza-Yates [14], all of them con-
tributing to the creation of biased sources of information to be used in the next
phases of the cycle.

2.4 Algorithmic Auditing
In many cases, perhaps in most cases, designers of computational systems fail
to include accountability and transparency mechanisms “by design” [150]. In
this context, Algorithmic Auditing allows us to uncover and understand potential
sources of discrimination driven by such algorithmic-based decision-making, as a
post-hoc solution to audit the system behavior in its past executions.

Early research on this topic includes a set of methods to detect discrimination
in online platforms [179]. Eslami et al. [69] show how to detect and quantify
a rating algorithm’s bias using cross-platform audit techniques in the context of
hotel rating platforms. Their work identified systematic differences of ratings
between three existing platforms and revealed how bias awareness can shift users’
attention from their own experience to the system as a whole, even trying to open
the black-box by gaming the rating system. This work also introduces a taxonomy
of methods for algorithmic auditing that frames our work as a within-platform
study. The authors of Galdon et al., [78] describe an auditing of an application
used to promote well-being among its users. This work discusses the issue of
not collecting sensitive data, as required by the GDPR and the data minimization
principle. This might prevent researchers from detecting biases against protected
groups. Barocas et al. [18] provided a taxonomy of the choices that are involved
in the designing of algorithmic evaluations.

In the specific context of search engines auditing, Mehrotra et al. [139] pro-
poses a methodology for measuring differential satisfaction across demographics.
Based on the proposed methodology, they conduct an external auditing of a search
engine based on a dataset collected by a third party composed of search queries
issued to the platform in a short period of time. Their analysis shows significant
differences in usage patterns and evaluation metrics for different demographic
groups, mainly based on age and gender. In the domain of access to housing,
Asplund et al. [11] perform an algorithmic auditing of received user ads and of
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the ordering of recommendations in different housing portals in the U.S. They
use a strategy based on “sock puppets,” creating automatic systems that interact
with the platform under fake user profiles, concluding that there are not statistical
significant differences between results shown for profiles simulating different age
or race. In the topic of Policy Learning in Raking, Singh et al. [186] proposes
a theoretical methodology to optimize not only for the utility of the rankings for
the users, but also considering fairness constrains of exposure with respect to the
ranked items. Their work studies the relation between an allocation metric (nor-
malized cumulative gain) and group disparity, measured in terms of item exposure,
proposing the inclusion of exposure-allocation constrains in the learning.
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Chapter 3

CHARACTERIZING BIASES IN
INPUT DATA

3.1 Introduction

Algorithmic Fairness is an emerging concern in computing science that started
within the data mining community but has extended into other fields including ma-
chine learning, information retrieval, and theory of algorithms [91]. It deals with
the design of algorithms and decision support systems that are non-discriminatory,
i.e., that do not introduce an unjustified disadvantage for members of a group, and
particularly that do not further place at a disadvantage members of an already dis-
advantaged social group. In machine learning, the problem that has been most
studied to date is supervised classification, in which algorithmic fairness meth-
ods have been mostly proposed to fulfill criteria related to parity (equality) [216].
Most of the methods proposed to date assume benevolence from the part of the
data scientist or developer creating the classification model: she is envisioned as
an actor trying to eliminate or reduce potential discrimination in her model.

The problem arises when dealing with malicious actors that can tamper with
the model development, for instance by tampering with training data. Tradition-
ally, poisoning attacks have been studied in Adversarial Machine Learning. These
attacks are usually crafted with the purpose of increasing the misclassification rate
in a machine learning model, either for certain samples or in an indiscriminate ba-
sis, and have been widely demonstrated in adversarial settings (see, e.g., [29]).

In this work, we show that an attacker may be able to introduce algorithmic
discrimination by developing a novel poisoning attack. The purpose of this at-
tacker is to create or increase a disadvantage against a specific group of individ-
uals or samples. For that, we explore how analogous techniques can be used to
compromise a machine learning model, not to drive its accuracy down, but with
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the purpose of adding algorithmic discrimination, or exaggerating it if it already
exists. In other words, the purpose of the attacker will be to create or increase a
disadvantage against a specific group of individuals or samples.

3.1.1 Motivation.

The main goal of this chapter is to show the potential harm that an attacker can
cause in a machine learning system if the attacker can manipulate its training
data. For instance, the developer of a criminal recidivism prediction tool [109]
could sample training data in a discriminatory manner to bias the tool against a
certain group of people. Similar harms can occur when training data is collected
from public sources, such as online surveys that cannot be fully trusted. A mi-
nority of ill-intentioned users could poison this data to introduce defects in the
machine learning system created from it. In addition to these examples, there is
the unintentional setting, where inequities are introduced in the machine learning
model as an undesired effect of the data collection or data labeling. For instance,
human annotators could systematically make mistakes when assigning labels to
images of people of a certain skin color [40].

The methods we describe on this chapter could be used to model the potential
harm to a machine learning system in the worst-case scenario, demonstrating the
undesired effects that a very limited amount of wrongly labeled samples can cause,
even if created in an unwanted manner.

3.1.2 Contributions.

This work first introduces a novel optimization framework to craft poisoning sam-
ples that against algorithmic fairness. After this, we perform experiments in two
scenarios: a “black-box” attack in which the attacker only has access to a set of
data sampled from the same distribution as the original training data, but not the
model nor the original training set, and a “white-box” scenario in which the at-
tacker has full access to both. The effects of these attacks are measured using
impact quantification metrics. The experiments show that by carefully perturbing
a limited amount of training examples, an skilled attacker has the possibility of
introducing different types of inequities for certain groups of individuals. This,
can be done without large effects on the overall accuracy of the system, which
makes these attacks harder to detect. To facilitate the reproducibility of the ob-
tained results, the code generated for the experiments has been published in an
open-source repository. 1.

1https://github.com/dsolanno/Poisoning-Attacks-on-Algorithmic-Fairness
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3.1.3 Chapter structure.
The rest of this chapter is organized as follows.

Section 3.2 provides further references to related work. Section 3.3, describes
the proposed methodology to craft poisoning attacks for algorithmic fairness. Sec-
tion 3.5 demonstrates empirically the feasibility of the new types of attacks on
both synthetic and real-world data, under different scenarios depending on the
attacker knowledge about the system. Section 3.6 presents our conclusions.3

3.2 Related Work

Adversarial Machine Learning Attacks. This work is based on Gradient-Based
Optimization, an optimization framework widely used in the literature on Ad-
versarial Machine Learning for crafting poisoning attacks [28, 140, 142, 105, 59].
Such framework is used to solve the bilevel optimization given by Eqs. (3.1)-(3.3),
and requires computing the gradient of the classification function learned by the
classifier. As a result, poisoning samples can be obtained by iteratively optimizing
one attack point at a time [211].
Measuring Algorithmic Fairness. Many different ways of measuring algorith-
mic fairness have been proposed [144]. Among those that can be applied in an
automatic classification context we find two main types: individual fairness met-
rics and group fairness metrics [91]. The former seek consistency in the sense
that similar elements should be assigned similar labels [67]. The latter seek some
form of parity, and in many cases can be computed from a contingency table indi-
cating the number of privileged and unprivileged samples receiving a positive or
negative outcome [153]. Popular group fairness metrics include disparate impact,
equalized odds [93], and disparate mistreatment [215].
Optimization-Based Approaches to Increase Fairness. Algorithmic fairness
can and often is compromised unintentionally, as discrimination in machine learn-
ing is often the result of training data reflecting discriminatory practices that may
not be apparent initially [19]. When this is the case, training data can be modified
by a type of poisoning attack, in which so-called “antidote” samples are added to
a training set to reduce some measure of unfairness. One such approach proposes
a method to be applied on recommender systems based on matrix factorization
[165]; another is based in the Gradient-Based Optimization framework used in
this work [118].

In addition to methods to mitigate unfairness by modifying training data (some-
thing known as a pre-processing method for algorithmic fairness [91]), other
methods modify the learning algorithm itself to create, for instance, a fair clas-
sifier [217, 215] In these works, the trade-off between accuracy and fairness is
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approached through an alternative definition of fairness based in covariance be-
tween the users sensitive attributes and the signed distance between the feature
vectors of misclassified users and the classifier decision boundary.

3.3 Poisoning Fairness
In this section we present a novel gradient-based poisoning attack, crafted with
the purpose of compromising algorithmic fairness, ideally without significantly
degrading accuracy.
Notation. Feature and label spaces are denoted in the following with X ⊆ Rd

and Y ∈ {−1, 1}, respectively, with d being the dimensionality of the feature
space. We assume that the attacker is able to collect some training and validation
data sets that will be used to craft the attack. We denote them as Dtr and Dval.
Note that these sets include samples along with their labels. L(Dval, θ) is used to
denote the validation loss incurred by the classifier fθ : X → Y , parametrized
by θ, on the validation set Dval. L(Dtr, θ) is used to represent the regularized loss
optimized by the classifier during training.

3.3.1 Attack Formulation
Using the aforementioned notation, we can formulate the optimal poisoning strat-
egy in terms of the following bilevel optimization:

max
xc

A(xc, yc) = L(Dval, θ
⋆) , (3.1)

s.t. θ⋆ ∈ arg min
θ

L(Dtr ∪ (xc, yc), θ) , (3.2)

xlb ⪯ xc ⪯ xub . (3.3)

The goal of this attack is to maximize a loss function on a set of untainted (val-
idation) samples, by optimizing the poisoning sample xc, as stated in the outer
optimization problem (Eq. 3.1). To this end, the poisoning sample is labeled as
yc and added to the training set Dtr used to learn the classifier in the inner opti-
mization problem (Eq. 3.2). As one may note, the classifier θ⋆ is learned on the
poisoned training data, and then used to compute the outer validation loss. This
highlights that there is an implicit dependency of the outer loss on the poisoning
point xc via the optimal parameters θ⋆ of the trained classifier. In other words, we
can express the optimal parameters θ⋆ as a function of xc, i.e., θ⋆(xc). This rela-
tionship tells us how the classifier parameters change when the poisoning point xc

is perturbed. Characterizing and being able to manipulate this behavior is the key
idea behind poisoning attacks.
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Within this formulation, additional constraints on the feature representation of
the poisoning sample can also be enforced, to make the attack samples stealthier
or more difficult to detect. In this work we only consider a box constraint that
requires the feature values of xc to lie within some lower and upper bounds (in
Eq. 3.3, the operator ⪯ enforces the constraint for each value of the feature vec-
tors involved). This constraint allows us to craft poisoning samples that lie within
the feature values observed in the training set. Additional constraints can be addi-
tionally considered, e.g., constraints imposing a maximum distance from an initial
location or from samples of the same class, we leave their investigation to future
work. Our goal here is to evaluate the extent to which a poisoning attack which is
only barely constrained can compromise algorithmic fairness.

The bilevel optimization considered here optimizes one poisoning point at a
time. To optimize multiple points, one may inject a set of properly-initialized
attack points into the training set, and then iteratively optimize them one at a time.
Proceeding on a greedy fashion, one can add and optimize one point at a time,
sequentially. This strategy is typically faster but suboptimal (as each point is only
optimized once, and may become suboptimal after injection and optimization of
the subsequent points).

Attacking Algorithmic Fairness.

We now define an objective functionA(xc, yc) in terms of a validation loss L(Dval, θ)
that will allow us to compromise algorithmic fairness without significantly affect-
ing classification accuracy. To this end, we consider the disparate impact crite-
rion [20]. This criterion assumes data items, typically representing individuals,
can be divided into unprivileged (e.g., people with a disability) and privileged
(e.g., people without a disability), and that there is a positive outcome (e.g., being
selected for a scholarship).

Although one might argue that there are several algorithmic fairness defini-
tions [144] that could be used for this analysis, we selected this criterion for its
particularity of being incorporated in legal texts in certain countries [72, 217].
Apart of that, recent studies [76] show how fairness metrics are correlated in three
clusters what means that targeting this criterion will also affect a set of other met-
rics with similar strength. In addition to this, authors of [19] used this metric to
illustrate the first of the three historical fairness goals that have been used to define
fairness metrics. Disparate impact is observed when the fraction of unprivileged
people obtaining the positive outcome is much lower the fraction of privileged
people obtaining the positive outcome. Formally, to avoid disparate impact:

D =
P (Ŷ = 1|G = u)

P (Ŷ = 1|G = p)
≥ 1− ϵ , (3.4)
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where Ŷ is the predicted label, and G = {u, p} a protected attribute denoting the
group of unprivileged (u) and privileged (p) samples within a setD. Disparate im-
pact thus measures the ratio between the fractions of unprivileged and privileged
samples that are assigned to the positive class. Typically, one sets ϵ ≈ 0.2 which
suggests D ≥ 0.8 for a fair classifier, as stated by the four-fifths rule of maximum
acceptable disparate impact proposed by the US Equal Employment Opportunity
Commission (EEOC) [72, 217]. Thus, in general, we should have D values closer
to one to improve fairness.

For our poisoning attack to work, we aim to minimize such a ratio, i.e., de-
creasing the fraction of unprivileged samples for which ŷ = 1, while increasing
the fraction of privileged users which are assigned ŷ = 1. For numerical conve-
nience, we choose to maximize the difference (instead of the ratio) between the
mean loss computed on the unprivileged and the privileged samples:

L(Dval, θ) =

p∑
k=1

ℓ(xk, yk, θ)︸ ︷︷ ︸
unprivileged

+λ
m∑
j=1

ℓ(xj, yj, θ)︸ ︷︷ ︸
privileged

. (3.5)

Note that the parameter λ here is set to p/m to balance the class priors (rather than
dividing the first term by p and the second by m).

To minimize D, we would like to have unprivileged samples classified as neg-
ative (lower numerator) and privileged classified as positive (higher denominator).
As we aim to maximize L(Dval, θ), we can label the unprivileged samples as pos-
itive (yk = 1), and the privileged samples as negative (yj = −1). Maximizing
this loss will enforce the attack to increase the number of unprivileged samples
classified as negative and of privileged samples classified as positive.

In Fig. 3.1, we report a comparison of the attacker’s lossA(xc, yc) = L(Dval, θ
⋆)

as given by Eq. (3.5) and the disparate impact D, as a function of the attack point
xc (with yc = 1) in a bi-dimensional toy example. Each point in the plot repre-
sents the value of the function (eitherA or D computed on an untainted validation
set) when the point xc corresponding to that location is added to the training set.
These plots show that our loss function provides a nice smoother approximation
of the disparate impact, and that maximizing it correctly amounts to minimizing
disparate impact, thus compromising algorithmic fairness.

3.4 Gradient-Based Attack Algorithm
Having defining our (outer) objective, we are now in the position to discuss how to
solve the given bilevel optimization problem. Since our objective is differentiable,
we can make use of existing gradient-based strategies to tackle this problem. In
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Figure 3.1: Attacker’s loss A(xc, yc) (left) and disparate impact (right) as a func-
tion of the attack point xc with yc = 1, on a bi-dimensional classification task.
Note how the attacker’s loss provides a smoother approximation of the disparate
impact, and how our gradient-based attack successfully optimizes the former,
which amounts to minimizing disparate impact, compromising algorithmic fair-
ness.

particular, we will use a simple gradient ascent strategy with projection (to enforce
the box constraint of Eq. 3.3). The complete algorithm is given as Algorithm 1. In
Fig. 3.1 we also report an example of how this algorithm is able to find a poisoning
point that maximizes the attacker’s loss.

Attack Initialization. An important remark to be made here is that initialization
of the poisoning samples plays a key role. In particular, if we initialize the attack
point as a point which is correctly classified by the algorithm, the attack will not
even probably start at all. This is clear if one looks at Fig. 3.1, where we consider
an attack point labeled as positive (red). If we had initialized the point in the
top-right area of the figure, where positive (red) points are correctly classified, the
point would have not even moved from its initial location, as the gradient in that
region is essentially zero (the value of the objective is constant). Hence, for a
poisoning attack to be optimized properly, a recommended strategy is to initialize
points by sampling from the available set at random, but then flipping their label.
This reduces the risk of starting from a flat region with null gradients [28, 211].

Gradient Computation. Despite the simplicity of the given projected gradient-
ascent algorithm, the computation of the poisoning gradient ∇xcA is more com-
plicated. In particular, we do not only need the outer objective to be sufficiently
smooth w.r.t. the classification function, but also the solution θ⋆ of the inner op-
timization to vary smoothly with respect to xc [28, 142, 59, 29]. In general, we
need A to be sufficiently smooth w.r.t. xc.

Under this assumption, the gradient can be obtained as follows. First, we

23



“output” — 2022/6/24 — 14:52 — page 24 — #46

Algorithm 1 Gradient-based poisoning attack
Require: xc, yc: the initial location of the poisoning sample and its label; η: the

gradient step size; t > 0: a small number.
Ensure: x′

c: the optimized poisoning sample.
1: Initialize the attack sample: x′

c ← xc

2: repeat
3: Store attack from previous iteration: xc ← x′

c

4: Update step: x′
c ← Π(xc + η∇xcA), where Π ensures projection onto the

feasible domain (i.e., the box constraint in Eq. 3.3).
5: until |A(x′

c, yc)−A(xc, yc)| ≤ t
6: return x′

c

derive the objective function w.r.t. xc using the chain rule [28, 211, 142, 29, 140]:

∇xcA = ∇xcL+
∂θ⋆

∂xc

⊤
∇θL , (3.6)

where the term ∂θ⋆

∂xc
captures the implicit dependency of the parameters θ on the

poisoning point x, and ∇xcL is the explicit derivative of the outer validation loss
w.r.t. xc. Typically, this is zero if xc is not directly involved in the computation of
the classification function f , e.g., if a linear classifier is used (for which f(x) =
w⊤x + b). In the case of kernelized SVMs, instead, there is also an explicit
dependency of L on xc, since it appears in the computation of the classification
function f when it joins the set of its support vectors (see, e.g., [28, 59]).

Under regularity of θ⋆(xc), the derivative ∂θ⋆

∂xc
can be computed by replacing

the inner optimization problem in Eq. (3.2) with its equilibrium (Karush-Kuhn-
Tucker, KKT) conditions, i.e., with the implicit equation∇θL(Dtr∪ (xc, yc), θ) ∈
0 [140, 142]. By deriving this expression w.r.t. xc, we get a linear system of
equations, expressed in matrix form as ∇xc∇θL + ∂θ⋆

∂x

⊤∇2
wL ∈ 0. We can now

compute ∂θ⋆

∂xc
from these equations, and substitute the result in Eq. (3.6), obtaining

the required gradient:

∇xcA = ∇xcL− (∇xc∇θL)(∇2
θL)−1∇θL . (3.7)

These gradients can be computed for various classifiers (see, e.g., [59]). In
our case, we simply need to compute the term ∇θL, to account for the specific
validation loss that we use to compromise algorithmic fairness (Eq. 3.5).

Finally, in Fig. 3.2, we show how our poisoning attack modifies the deci-
sion function of a linear classifier to worsen algorithmic fairness on a simple bi-
dimensional example. As one may appreciate, the boundary is slightly tilted,
causing more unprivileged samples to be classified as negative, and more privi-
leged samples to be classified as positive.
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Figure 3.2: Gradient-based poisoning attack against a logistic classifier, on a bi-
dimensional classification task. The classification function and the corresponding
decision regions are reported before (left) and after (right) injection of the poison-
ing samples (red and blue stars in the right plot).

3.4.1 White-Box and Black-Box Poisoning Attacks

The attack derivation and implementation discussed throughout this section im-
plicitly assumes that the attacker has full knowledge of the attacked system, in-
cluding the training data, the feature representation, and the learning and classifi-
cation algorithms. This sort of white-box access to the targeted system is indeed
required to compute the poisoning gradients correctly and run the poisoning at-
tack [29]. It is however possible to also craft black-box attacks against different
classifiers by using essentially the same algorithm. To this end, one needs to
craft the attacks against a surrogate model, and then check if these attack sam-
ples transfer successfully to the actual target model. Interestingly, in many cases
these black-box transfer attacks have been shown to work effectively, provided
that the surrogate model is sufficiently similar to the target ones [149, 59]. The
underlying assumption here is that it is possible to train the surrogate model on
samples drawn from the same distribution as those used by the target model, or
that sufficient queries can be sent to the target model to reconstruct its behavior.

In our experiments we consider both white-box attacks and black-box transfer
attacks to also evaluate the threat of poisoning fairness against weaker attackers
that only possess limited knowledge of the target model. For black-box attacks,
in particular, we assume that the attacker trains the substitute models on a training
set sampled from the same distribution as that of the target models, but no queries
are sent to the target classifiers while optimizing the attack.

25



“output” — 2022/6/24 — 14:52 — page 26 — #48

3.5 Experiments
This section describes the obtained results for two different datasets, one syn-
thetic set composed of 2000 samples, each of them having three features, one
of them considered the sensitive attribute, not used for the optimization. The
second dataset corresponds to one of the most widely used by the Algorithmic
Fairness community, a criminal recidivism prediction dataset composed by more
than 6000 samples, with 18 features describing each individuals. For each dataset,
we consider both the white-box and the black-box attack scenarios described in
Section 3.4.1.

3.5.1 Experiments with synthetic data
The first round of experiments uses synthetic data set to empirically test the im-
pact of the attacks with respect to varying levels of disparity already found in
the (unaltered) training data. Data is generated using the same approach of Za-
far et al. [217]. Specifically, we generate 2,000 samples and assign them to
binary class labels (y = +1 or y = −1) uniformly at random. Each sam-
ple is represented by a 2-dimensional feature vector created by drawing samples
from two different Gaussian distributions: p(x|y = +1) ∼ N([2; 2], [5, 1; 1, 5]
and p(x|y = −1) ∼ N([µ1;µ2], [10, 1; 1, 3]) where µ1, µ2 are used to modify
the euclidean distance S between the centroids of the distributions for the priv-
ileged and unprivileged groups so that different base rates [52] can be tested in
the experiments. Then, a sample’s sensitive attribute z is assigned by drawing
from a Bernoulli distribution using p(z = +1) = p(x′|y=+1)

p(x′|y=+1)+p(x′|y=−1)
where

x′ = [cos(ϕ) − sin(ϕ); sin(ϕ), cos(ϕ)]x corresponds to a rotated version of the
feature vector x.

Using the generator we have described, datasets such as the ones as depicted
in Figure 3.3 can be obtained. In this figure, the feature vector x is represented
in the horizontal and vertical axes, while the color represents the assigned label
y (green means favorable, red means unfavorable) and the symbol the sensitive
attribute z (circle means privileged, cross means unprivileged).

We generate multiple datasets by setting S ∈ {0, 1, 2, . . . , 9}. We then split
each dataset into training Dtr (50% of the samples), validation Dval (30%) and
testing Dtest (20%) subsets. In each run, a base or initial modelM is trained. This
modelM corresponds to a Logistic Regression model in the first setting and to a
Support Vector Machine with linear kernel in the second scenario. The regular-
ization parameter C is automatically selected between [0.5, 1, 5, 10] through cross
validation. In the White-Box setting, the attack is optimized forM so that Eq. 3.1
is minimized in the training set Dtr and Eq. 3.3 is maximized in the validation set
Dval. In the Black-Box setting, the attack is optimized against a surrogate model
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Figure 3.3: (Best seen in color.) Examples of generated synthetic data sets for
different values of the separation S between groups.Privileged elements (z = +1)
are denoted by circles and unprivileged elements (z = −1) by crosses. Favorable
labels (y = +1) are in green, while unfavorable labels (y = −1) are in red.

M̂, a Logistic Regression classifier, trained with another subset of data generated
for the same value of the parameter S Each of these attacks generates a number
of poisoning samples. The poisoned model is the result of retraining the original
model with a training set that is the union of Dtr and the poisoned samples.

The attack performance is measured by comparing the model trained on the
original training data with a model trained on the poisoned data. The evaluation is
done according to the following metrics, which for each dataset are averaged over
ten runs of each attack:

• Accuracy The accuracy on test obtained by the poisoned model is similar
and correlated with the accuracy obtained by a model trained on the original
data. It is important to note that the separability of the generated data is
also highly correlated with the separation between the groups in the data,
creating this effect.

• Demographic parity Measures the allocation of positive and negative classes
across the population groups. Framed within the Disparate impact criteria
that aims to equalize assigned outcomes across groups, this metric is for-
mulated as:

P (Ŷ = 1|G = unprivileged)− P (Ŷ = 1|G = privileged)

It tends to zero in a fair scenario and is bounded between [1,−1] being -1
the most unfair setting. This metric is correlated with the Disparate impact
metric introduced in Section 3.3 and has been selected for convenience in
the visual representation of the results.
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• Average odds difference The average odds difference is a metric of dis-
parate mistreatment, that attempts for Equalized odds [93], it accounts for
differences in the performance of the model across groups. This metric is
formulated as:

1

2
[(FPRp − FPRu) + (TPRp − TPRu)]

It gets value zero in a fair scenario and is bounded between [1,−1] being -1
the most unfair setting.

• FNR privileged False Negative Rate for the privileged group of samples.

• FNR unprivileged False Negative Rate for the unprivileged group of sam-
ples.

• FPR privileged False Positive Rate for the unprivileged group of samples.

• FPR unprivileged False Positive Rate for the unprivileged group of sam-
ples.

Results shown on Figure 3.4 show the obtained performance of the attacks
for the generated data. In this figure, the horizontal axis is the separation S be-
tween classes in each of the ten datasets. Analyzing the results, we observe that
the poisoned models increase disparities in comparison with a model created on
the unaltered input data, across all settings. Additionally, they yield an increased
FPR for the privileged group (privileged samples that actually have an unfavor-
able outcome are predicted as having a favorable one), increasing significantly the
observed unfairness as measured by the fairness measurements. We note that the
attacks also decrease the FNR of the unprivileged group (unprivileged samples
that actually have a favorable outcome are predicted as having an unfavorable
one). This is most likely a consequence of the attack’s objective of maintaining
accuracy and show that this attack is not trivial. If the attack were only to increase
disparities, it would also increase the FNR of the unprivileged group with a larger
decrease in accuracy than what we observe. The decrease of FNR for the unprivi-
leged group, however, is smaller than the increase of FPR for the privileged group,
as the average odds difference plot shows, and hence the attack succeeds.

3.5.2 Experiments with real data
To demonstrate the attacks on real data, we use the COMPAS dataset released by
ProPublica researchers [109], which is commonly used by researchers on Algo-
rithmic Fairness. This dataset contains a prediction of criminal recidivism based
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Figure 3.4: Comparison of the original model against the model generated by the
White-box attack and Black-box attacks, for ten synthetic datasets generated by
different separation parameters (S). Each data point is the average of ten runs
of an attack. We observe that attacks have a moderate effect on the accuracy
of the classifier, and can affect the classifier fairness (demographic parity and
odds difference) to an extent that becomes more pronounced if the original dataset
already has a large separation between classes (larger values of S).

on a series of attributes for a sample of 6, 167 offenders in prison in Broward
County, Florida, in the US. The attributes for each inmate include criminal history
features such as the number of juvenile felonies and the charge degree of the cur-
rent arrest, along with sensitive attributes: race and gender. For each individual,
the outcome label (“recidivism”) is a binary variable indicating whether he or she
was rearrested for a new crime within two years of being released from jail.

We use this dataset for two different types of experiments. First, we show how
the attacks demonstrated on synthetic data can also be applied to this data, and
demonstrate the effect of varying the amount of poisoned samples, Second, we
evaluate the transferability of the attack to other classification models.

White-Box and Black-Box poisoning attacks with varying amounts of poi-
soned samples. This experiment compares the original model against the model
obtained under the two attack models.
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Figure 3.5: Comparison of the original model against the model generated by a
White-box attack and a Black-box attack, for varying percentages of poisoned
samples. The main difference between both types of attack is that the black-box
attack starts having more noisy behaviour also drastically reducing the accuracy of
the classifier (thus being more easily detectable) when the percentage of poisoned
samples exceeds a certain threshold (about 20%).

Figure 3.5 shows the results, which are in line with the findings of the exper-
iments on synthetic data. According to the obtained results, both types of poi-
soning attacks are is able to increase unfairness of the model with a more modest
effect on the accuracy. Also, an interesting finding is the stability of the White-
Box attack as opposite to the Black-Box attack. Whereas the first keeps the same
trend with the growing number of samples, the later starts having a unstable and
noisy behaviour after adding the 20% of samples, causing for some cases a more
unfair model but also affecting the accuracy of the system in a manner that could
be easily detected.

In Figure 3.5 we also include an Error-Generic Poisoning Attack [59] for the
Logistic Regression model , which is designed to decrease the accuracy of the
resulting model. We observe that this type of generic adversarial machine learning
attack does not affect the fairness of the classifier nearly as much as the attacks
we have described on this paper.

As expected, computing the obtained performance for all the stated metrics,
(Figure omitted for brevity) can be observed that the effect of any attack increases
with the number of poisoned samples. In general, these attacks increase the False
Negatives Rate (FNR) for the unprivileged samples, and increase the False Posi-
tives Rate (FPR) for the privileged samples.

Transferability of the attack. We study how an attack would affect the perfor-
mance of other type of models, simulating different scenarios of Zero Knowledge
attacks.

Specifically, the attacks we perform is optimized for a Logistic Regression
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model, and its performance is tested for other models: (a) Gaussian Naive Bayes.
(b) Decision Tree; (c) Random Forest; (d) Support Vector Machine with linear
kernel; and (e) Support Vector Machine with Radial Basis Function (RBF) kernel.
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Figure 3.6: Transferability of the attacks from Logistic Regression to other mod-
els.

Results are shown on Figure 3.6, in which each data point corresponds to
the average of five experimental runs. We observe that the attack optimized on
a Logistic Regression classifier has a stronger effect on the Logistic Regression,
Support Vector Machine (for both types of kernel tested) and Naive Bayes models.
In contrast, while it can introduce unfairness through demographic disparity and
average odds difference on a Decision Tree or Random Forest classifier, its effects
are more limited.

3.6 Conclusions
The results show the feasibility of a new kind of adversarial attack crafted with the
objective of increasing disparate impact and disparate mistreatment at the level of
the system predictions. We have demonstrated an can attacker effectively alter
the Algorithmic Fairness properties of a model even if pre-existing disparities
are present in the training data. This means that these attacks can be used to
both introduce algorithmic unfairness, as well as for increasing it where it already
exists. This can be done even without access to the specific model being used, as
a surrogate model can be used to mount a black-box transfer attack.
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Chapter 4

PROFESSIONAL BIAS

4.1 Introduction
The term Artificial Intelligence (AI) describes a broad concept related to the abil-
ity of machines to carry out tasks in a way that might be perceived as “smart".
Machine Learning (ML) constitutes a subfield of AI that studies algorithms that
improve automatically through experience and have been used to infer meaning,
generalise and learn patterns from data and thus discover “knowledge" that was
not explicitly programmed by the creator.

In recent years, the AI domain has experienced an impressive growth.1

4.1.1 Motivation

The main objective of this paper is to analyze advancements in and discussions
around AI from a social sciences’ point of view. From this perspective we ex-
amine which ‘conventions’ or moral orders are employed during the creation of
these models based on dialogue and justifications between individual(s) and the
collective. By studying the research on, the design of, the development of and the
public opinion on AI related systems, we focus on the interim process reasoned to
be a key contributor to the subsequent interactions between humans and machines.
To this end, we employ the Economics of Convention (EC) – a general social sci-
ence theory – which proposes a pragmatic perspective to study coordination and
conflicts, analyzing the underlying justifications and conventions. Through the
theoretical lens of the EC, we analyze how distinct moral registers represented
by conventions within the EC are reflected in this domain. Having a better un-
derstanding of the conventions guiding the perceptions and advancements in the

1https://www.forbes.com/sites/louiscolumbus/2018/01/12/10-charts-that-will-change-your-
perspective-on-artificial-intelligences-growth/
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field of AI is considered to be a necessary preliminary step to a) understand the
conventions reflected by these autonomous systems in their interactions with so-
cieties thereafter and b) shed light on ongoing conflicts around transparency or
human vs. AI.

The Economics of Convention (EC) provide the framework for this study,
which are described in detail in the first part of this paper. For the analysis of
conventions, we create a real-world text dataset with subsets from three different
text sources and examine the distribution of conventions in these subsets. We use
an iterative training process based on active learning as proposed in [180] to build
a supervised ML model with one binary classifier per convention and show results
for each convention. The dataset along with the code is released to the research
community.2

4.1.2 Contributions
This work employs the theoretical framework of the EC to study written dialogues
and research abstracts in 1) AI software design and development, 2) AI research
and 3) social discussions about AI. Either researchers describe their findings to
different communities (GitHub, Semantic Scholar (S2)) or AI is discussed in a
community (Reddit). We aim to reveal the conventions, which these different
communities follow. We assume that documents in open-source ML and AI soft-
ware repositories, and the conversations within, reflect the conventions guiding
decisions taken during the AI development phase. Research articles in the domain
of ML and AI describe findings to the research community, and as such should
reflect the conventions followed by scientists working in the field of AI research
and design. For discussions in online forums where individuals with varied levels
of expertise on the topic of AI exchange information and discuss recent advance-
ments in the field, we assume a broader and more general use of conventions.

4.1.3 Chapter structure
This chapter is structured as follows: First, we provide in Section 4.2 an overview
of the related work in relevant areas closely related to the work in this paper. After
that, the theoretical framework of our analysis is described in Section 4.3. The
next section (Section 4.4) provides an overview of the creation of the dataset and
the different subsets in Section 4.5, where we also outline the architecture to train
the ML models. In the subsequent section, we describe the results of the analysis
of the dataset as we evaluate the performance of our classifiers and analyze the
use of conventions in the different subsets of our dataset in Section 4.6. Finally,

2https://github.com/dsolanno/AIVC
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Section 4.7 discuss limitations of our approach and 4.8 summarizes our work in a
conclusion and .

4.2 Related Work
Let us start off by providing an overview of the state of the art on the EC field.
Research efforts focused in the analysis of each of the data sources considered in
this work are summarized.

4.2.1 Economics of Convention (EC)
Although there is a large body of literature on understanding the motivation of
open source software developers, none of them examines the use of the EC. [103]
apply the EC in order to explain inter-organizational relationships in the coordina-
tion process of platform-based multi-sourcing in the general context of software
development. Non-technical approaches such as [60], [82] or [116] use the EC
to explain the coordination of pluralism and contradictory strategies in organiza-
tions. Replacing the term “Economics of Convention” with “motivation” leads
to additional results in the domain of software development. Especially in open
source software development, several studies focus on motivation [96, 170]. Ac-
cordingly, previous research identifies five primary categories of motifs [36]:

• Intrinsic motivation, i.e., fun or self-efficacy [173].

• External rewards, i.e., monetary incentives or career opportunities [122].

• Ideology, i.e., altruism [190].

• Community recognition, i.e., fame or reputation [145].

• Learning, i.e., development of personal skills or knowledge [207].

However, these categories only partially relate to the EC, as the EC shifts the
research perspective; the above mentioned along with most previous works rely
on agent-based approaches, which focus on the agents or actors, while the EC
studies situations, in which agents, objects, technologies, etc. interact.

4.2.2 Content Analysis of Open Source Projects
GitHub has been widely studied as a source of information for software develop-
ment projects. Most of the existing contributions based on the analysis of open
source project content fall under the following four categories: user analysis,
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programming language prevalence, project quality analysis and project evo-
lution predictability. Due to the vast amount of studies on open source project
content, this review is limited to contributions which are closely related to the
work described in this paper.

Besides technical approaches, previous work on the study of project content
often applies mathematical and statistical modelling to understand behaviour [51].
This approach is also sometimes combined with qualitative studies based on au-
tomated processes. [181] combine automated topic extraction with manual vali-
dation to categorise GitHub repositories based on the content of README files.
Furthermore, [94] propose the use of both qualitative and quantitative approaches
to automatically detect instructions for software development in project descrip-
tion files.

Apart from these efforts, [158] automatically structure the content of GitHub
README files. In order to do so, they combine manual annotation with auto-
mated text classification approaches. [219] perform a qualitative analysis of soft-
ware projects related to scientific articles in the field of AI in work which analyzes
content specifically related to ML and/or AI in GitHub. Although there are stud-
ies on the content of GitHub project description files, these studies have different
objectives. In contrast, our work proposes for the first time the categorisation of
AI and ML related projects based on the content of the README file according
to the EC paradigm.

4.2.3 Content Analysis of Scientific Articles
Although there is indeed much work in quantitative analysis on scientific articles,
this body of work is mainly focused around the extraction of various entity and
relation types such as named entities [12], co-references [90] and semantic roles
[95]. Accordingly, previous work analysing Semantic Scholar (S2) focuses on
those types [131]. Although there is work on the identification of patterns within
the research community, this work is concerned with structural analysis such as
citations and gender and not with discourse patterns [205]. In recent work on
language modeling in scientific texts, [22] report state of the art results on several
standard NLP tasks. However, such a model is generally not directly feasible
for convention classification as this complex task requires in depth control of the
iterative labeling and classification process.

4.2.4 Content Analysis of Online Discussions
Online forums and discussion sites are widely used to study social interaction.
Different research communities study a variety of aspects such as the evolution
and predictability of interactions in general [83] and popular posts in particular
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[55]. [39] study the evolution of user communities and social roles. [24] and [92]
focus on the reliability and correctness of the information.

[135] perform a sentiment analysis of public perception of AI for expert and
non expert groups of users on Twitter and [108] compare opinions of the public
and media on robots and autonomous systems. [71] study the evolution of media
perception of AI, and [134] study privacy concerns of users about intelligent as-
sistants by performing a survey and analysing public reviews. While [57] study
inter-community conflicts and common patterns, they define the conflicts as anti-
social behaviour and do not consider the EC theory or other types of conflicts.

All this work proves that online social sites are valuable sources of knowledge
for the understanding of social behaviours and opinions. Along this line, our
work enhances the understanding of society’s perception of AI through the EC
framework.

4.3 Economics of Convention (EC)
The main focus of our work lies at the intersection of the EC theory and the re-
search, design, development and public opinions of AI-related systems. The EC,
as a general social science theory developed by [34], proposes consistent prag-
matic and situative concepts for the sociological analysis of behavioral coordina-
tion. It relies on justifications observed during ordinary disputes. This framework
of justification is conceived as a theoretical research lens to empirically study co-
operation and conflicts. In conflict situations, human actors mobilise arguments to
defend their perspective. Based on field surveys and Western political philosophy,
Boltanski and Thévenot develop a taxonomy of various conventions, or registers,
of the so called “common good” the actors mobilize. The common good – or the
benefit or interests of all – directly refers to specific perceptions of justice and
fairness [34, 61]. Hence, (potential) conflicts arise when a view of the common
good that is based on one principle of justification is criticised according to crite-
ria which underlie another principle of justification. This theoretical approach has
been already used in many different fields, e.g. the production of consumer goods
[191, 32] and health [56, 182, 21]. It is found to be useful for gaining more insight
into what is at stake in emerging conflicts. [34] identify six justification registers,
each based on different philosophical foundations in Western liberal societies and
conceptions of justice and what is fair: Civic, Industrial, Market, Domestic,
Inspired, and Renowned. [33] and [119] expand it with two more registers: the
Project and the Green register. [182] introduce a further Vitalist register based
on the ‘googlization of health research’.

Table 4.1 provides an overview of each of these registers with their principles
of justification. It shows that there is a plurality of possible conventions or regis-
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Convention Common good Values

Industrial Increased efficiency Functionality, expertise,
optimization

Project Innovation Activity, experimentation,
and the network connection

Market Economic growth Competition, consumer
choice, profit

Inspired Inspiration Spontaneity, deliberation,
emotion

Civic Collective will Inclusivity, solidarity,
equality

Domestic Tradition Hierarchy, trust
Green Protection of Environmental activism

environment
Renown Public opinion Popularity, fame

Table 4.1: Registers of worth in the Economics of Convention

ters. The EC defines a ‘convention’ or ‘register’ not merely as a habit or custom
[197, 34]; the concept of conventions in the EC is more complex. Conventions
and registers form interpretative frameworks which actors develop and manage to
evaluate and coordinate ‘action situations’ [62]. However, this does not imply that
each individual is part of a particular convention, or that individuals consciously
act according to the precepts of any of these mentioned [56]. On the contrary,
depending on interactions with others, actors can easily pass ‘from one conven-
tion to another’ [56]. Similarly, the justifications for each of the actor’s activities
are implicit; individuals only make them explicit in a conflict. Coordination of
these conflicts requires either agreement on a common principle or that the actors
find a common understanding, which can then emerge between different registers
of justification. All conventions refer to a legitimate and immeasurable concep-
tion of the collective so that no convention is more rational than any other. The
decision for a certain convention or register is not merely a matter of calculation
but a choice between several possible common traits the actors share in their in-
teractions [61]. Each register or convention acts as a logical, harmonious order
of statements, objects and people that provide a general sense of justice. Hence,
the typology of [34] offers an applicable framework to identify the conventions,
which guide researchers, developers and their moral orientations in the field of
AI.
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Convention Top keywords

Industrial Performance, standard, tests, learning, reliable
Project City, projective, connections, links, networks
Market Customized, goods, license, sell, billion
Inspired Inspiration, inspired, visual, passion, method
Renown Opinion, press, fame, audience, influence
Civic Collective, civic, interests, license, children
Domestic Superiors, upbringing, trust, dependence, origin
Green Green, economy, growth, carbon, sustainable

Table 4.2: A combination of the top five keywords in the dataset per convention
established by manual analysis and TF-IDF frequency

4.4 The EC Dataset

The dataset contains subsets from three main data sources: Semantic Scholar (S2)
research chapter abstracts3, GitHub README files4 and Reddit forums5.

To pre-filter documents we use a combination of two sets of keywords: First,
we use a keywords list manually created by domain experts, including one of the
authors and based on the registers introduced in Table 4.1. Second, we perform
keyword matching after a first iteration of labeling based on ‘Term Frequency-
Inverse Document Frequency’ (TF-IDF) [177] to extract keywords that are more
common for each convention and not so common for the rest. Table 4.2 shows the
five most important (of more than 30) keywords for each convention.

4.4.1 GitHub

GitHub is a web-based interface and cloud-based service that provides tools to
effectively store and manage code in addition to tracking and controlling changes
in the code base. GitHub stores the code and metadata of more than 100 mil-
lion projects with involvement from more than 31 million developers.6 More than
8,500 projects related to AI topics are collected using the official GitHub API. We
collect the content of the README file along with creation and last update times-
tamps in addition to statistics about the popularity of a repository. To avoid bias,
repositories from all different levels of popularity ( measured with the GitHub
star rating) are gathered. In order to compare the use of conventions in GitHub AI

3https://semanticscholar.org
4https://github.com
5https://reddit.com/
6https://github.blog/2018-11-08-100m-repos
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Data source Sentences Items

GitHub AI 127,236 8,609 repositories
GitHub non-AI 71,706 5,358 repositories
S2 AI 22,742 2,954 abstracts
S2 non-AI 69,694 5,970 abstracts
Reddit AI 38,296 2,455 threads
Redit non-AI 219,916 3,875 threads

Total size 549,590 29,221

Table 4.3: Counts of sentences and items for AI and non-AI subsets from each
data source. Depending on the specific data source, items refer to repositories,
abstracts or threads.

related repositories with those in non-AI related repositories, data from an equiv-
alent number of repositories similar to AI related topics is collected. Similarity
is calculated on the basis of the number of stars. Table 4.3 shows the no. of
sentences and the no. of repositories in the GitHub subset.

4.4.2 Semantic Scholar (S2)
Semantic Scholar (S2) is a search engine for peer-reviewed articles, which pro-
vides an open research corpus with more than 40 million chapters from computer
science and bio-medicine in machine readable JSON format [8]. For the analysis
of the conventions, we select a sample of entries that appear in one of the AI con-
ferences listed in [112] and which are published after the year 2016. This list helps
us to analyze the use of conventions in different sub-fields of AI, such as robotics,
computer vision and natural language processing. We only select publications
from 2016 onward because during this time, research in AI and applications of
ML in particular received a significant boost with the release of TensorFlow [1].
This sample is further narrowed down by pre-filtering documents with the help
of a list of keywords that belong to either of the registers in Table 4.1. Table 4.2
shows some of the most important keywords from this list.

4.4.3 Reddit
Reddit is a website centered around social news, web content rating, and discus-
sion. Communities are named ‘subreddits’ and created around topics. We collect
different threads from ML and AI ‘subreddits’. In detail, the text from the title of
post which starts a thread, its body and the first level answers are collected by us-
ing the Reddit API. Samples from the AI domain are collected from a ‘subreddit’
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called ‘r/artificial’, whereas the non-AI examples were gathered from a variety
of ‘subreddits’ related to the computer science field: ‘Javascript’, ‘DataBase’,
‘Python’, ‘Android’. We only use threads with a minimum of 4 upvotes (posi-
tive votes by readers from the community) to ensure that only relevant threads are
considered in the analysis.

4.5 Methods for Building the EC Model
In order to build an EC ML model and analyse the predictions on our dataset, we
define the EC classification as a multi-label task whereby each sentence in our
dataset may have multiple associated conventions and hence multiple labels.

To the best of our knowledge, this is the first attempt to build a text-based EC
classifier and no existing datasets can be used to train such an ML classifier. We
regard the creation of a dataset for this purpose as a valuable contribution to the
scientific community. Due to the complexity of the EC theory, the labeling of
the dataset facilitated by the authors of this chapter was a time consuming task
necessitating expertise and care. To optimize the labeling effort we use an active
learning approach [180] focused on the labelling of items most beneficial to the
training of the models. The quality of the predictions are thus incrementally im-
proved while at the same time new samples are labeled to train successive versions
of the classifiers.

4.5.1 Model Selection
The EC model should cover the following:

• Support multi-label classification, where one sentence can have multiple
labels and the number of labels per sentence is not fixed.

• Support multi-class classification, where sentences can belong to 1 out of
multiple categories

To this end, the classifiers are trained using a strategy commonly known as
one vs. rest (or one vs. all) [168]. This strategy involves the training of one binary
classifier per class (i.e. convention) to model a multi-class problem.

As such, the eight binary class-labels show multiple classes per item (i.e. sen-
tence) along with a confidence score between 0 and 1 for each predicted label.
This in effect represents a multi-label architecture because one item can belong to
multiple classes (i.e. one sentence can belong to more than one convention). We
decompose a multi-label, multi-class problem into a set of binary classifiers.
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The upside of the one vs. all strategy is that it enables classifier calibration
in terms of precision. Selecting a classification threshold with equal levels of
precision for all classifiers allows a balanced comparison of the results from the
different classifiers. A classifier only outputs a positive label when this threshold
is exceeded, otherwise the label is negative. Furthermore, the architecture based
on classifiers that are combined into one big model facilitates the building and
testing of individual convention classifiers which offers individual performance
checks. This lightweight approach also eases the data handling process in the
active learning scenario.

We use convolutional neural network (CNN) classifiers following the architec-
ture proposed by [113] with the standard parameters. The network uses an input
sequence of 32 vectors per sample to represent a sentence, where each of the vec-
tors is encoded with a 100-dimensional word embedding vector. The network is
composed of 14 layers, four of them convolutional layers, with over 10 mio. pa-
rameters of which ∼ 300k are trainable. It uses categorical cross entropy as loss
and a relu activation function for the hidden layers.

Accordingly, one individual classifier Cc is trained per convention C. Given
a sentence S, the classifier Cc is trained such that it assigns a probability score
P for that sentence being part of the convention C. Therefore: Cc(S,C) = P
where P = [0, 1]. A combination of N = 8 binary classifiers (one per convention)
predicts the probability of an item (sentence) to belong to each possible class label
(convention). We set the calibration threshold to 0.9 precision during training
to ensure meaningful labels. We classify conventions on sentence level because
sentences correspond to the minimal units which reflect conventions in text.

As a ML classifier requires data input in the form of numeric values rather
than continuous or discrete variables, a method to numerically represent the train-
ing text in the form of a vector is required. The most common approach to date
to solve this problem is the use of word embeddings. Words are transformed into
n-dimensional vector representations and projected into a new multidimensional
space. The contextual relationship of words with similar context is reflected in the
n-dimensional space by distance (e.g. similar words are close to one another). To
this end we use pre-trained GloVe word embeddings [154] for the vector repre-
sentation of words in this n-dimensional space.

4.5.2 Labeling of Dataset and Active Learning
Due to the complexity of the EC, labeling the dataset demands both time and
expertise. That is why an active learning model with a focus on uncertainty sam-
pling is implemented. Uncertainty sampling prioritizes correctly labelling items
based on classifier confidence. One objective is to enhance the training data by
correctly labelling items that are classified with a low confidence score below 0.2
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Figure 4.1: Active learning pipeline to collect and verify training data

and improve classifier performance like that. Further focus is on correctly labeling
items classified with a confidence close to the classifier’s decision boundary (i.e.
between 0.4 and 0.6) and a strong focus lies on confirming the models’ belief in
items with a confidence score above 0.8). A total of 60% of the labeled samples in
our dataset come from high confidence predictions, 35% are (re-)labeled from the
low confidence predictions and the remaining 5% come from the interval around
the decision threshold.

The models are updated with an iterative active learning pipeline After each
iteration the model is evaluated on a fixed labeled set of items of 20% of the
(growing) entire dataset. A fixed set is suitable for fast evaluation. The pipeline
illustrated in figure 4.1 includes the following steps:

1. The classifiers are pre-trained with seed data. To this end, domain experts
labeled a random set of sentences from the GitHub subset.

2. In the first iteration, the eight classifiers are trained with the seed data, new
labels are incorporated in suceeding iterations.

3. The performance of the trained classifiers is evaluated on labeled data and
they are ready for predictions on unseen data.

4. Sentences from GitHub, S2 and Reddit are classified.
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Convention Accuracy AUC N Eprevalence

Industrial 0.750 0.708 1289 1/10
Project 0.801 0.828 521 1/100
Market 0.870 0.931 1082 1/100
Renown 0.812 0.859 301 1/100
Civic 0.902 0.897 477 1/1000
Inspired 0.801 0.895 355 1/1000
Domestic 0.866 0.901 475 1/1000
Green 0.901 0.931 280 1/10000

Table 4.4: Comparison of model performance per convention

Data source Accuracy AUC

GitHub 0.792 0.823
S2 0.748 0.749
Reddit 0.789 0.765

Table 4.5: Model performance per data source

5. The classification outputs eight confidence scores per sentence (one per
classifier).

6. The aggregated data containing sentences and the associated confidence
scores is pushed to a centralised cloud service and consumed by our web
based active learning tool7. Since the labeled data should be representative
of the available unlabeled data, The active learning tool shows a histogram
to provide insight to the most beneficial areas of focus for the domain ex-
perts.

7. Domain experts validate or relabel sentences with a confidence score or
label unseen sentences.

8. The labeled sentence is added to the training data for the next iteration. A
separate algorithm ensures equal numbers of positive and negative examples
per classifier to avoid imbalance. Steps (2) to (8) are repeated until training
data suffices.

We ensure label quality with quality checks using a Qualitative Data Analysis
(QDA) software8 following the principle of deductive procedure for content anal-
ysis [137] parallel to the iterative active learning pipeline approach. We ensure

7A Python-based interactive GUI
8https://atlasti.com/
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the validity and reliability of the qualitative analysis by means of investigator tri-
angulation. Investigator triangulation involves the use of multiple researchers in
an empirical study [9].

Our investigator triangulation involves three authors of this chapter from dif-
ferent disciplines in the coding and labelling process and external EC-experts,
with whom codes and labels are contrasted and discussed. The final coding it-
eration is performed on a random sample of 100 threads per data set, including
context information such as links to the original posts in order to account for the
situational approach of the EC.

4.6 Results
This section evaluates the performance of the classifiers on the entire dataset as
well as on each subset. Furthermore, we present a quantitative and qualitative
analysis of the predicted conventions.

Figure 4.2: Percentage of conventions in each data subset for AI and non-AI re-
lated items as predicted by the classifiers.

Performance of Classifiers

We evaluate the performance of the classifiers with the following metrics:

• Accuracy: Accuracy is the ratio of correctly predicted elements between
all the samples. Accuracy measures the ability of the classifier to identify
elements from the positive and the negative classes and also considers the
ability to differentiate positive samples from the negative ones.

• Area under curve (AUC): The AUC score provides an aggregate measure
of performance across all possible classification (confidence) thresholds.
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AUC can be interpreted as the probability for a model to rank a random
positive example higher than a random negative example.

• Precision: Precision is the ratio tp/(tp + fp) where tp is the number of
true positives and fp the number of false positives. Precision is intuitively
the ability of the classifier not to label as positive a sample that is negative.
Precision is used to set the performance acceptability threshold for the built
classifiers.

Each of the models is independently evaluated on the test set with both metrics
using leave-one-out cross validation. For each classifier, a classification threshold
with value Tcalibration is selected so that at least precision of 90% in test is ob-
tained. Having similar precision for all of them facilitates the comparison of their
predictions and ensures a limited amount of false positives.

Table 4.4 contains the average score for each classifier according to the follow-
ing metrics: the number N of training samples for each convention and a value
Eprevalence referring to the estimated prevalence of each convention in the dataset,
which we determine in a manual analysis. Only a small number of conventions
with a high discrepancy between N and Eprevalence are in the dataset, so we collect
samples from other data sources to train such classifiers. Learning curves provide
insight about the amount of labeled data which the classification models require to
achieve satisfactory results and the amount they need to improve the results. We
use ten fold cross-validation to split the whole dataset k = 10 times in training
and test set. Accordingly, the classifier is trained repeatedly on all but one of the
subsets and evaluated on each one of the other subsets and a score for each train-
ing subset size and the test set is computed. Afterwards, the scores are averaged
over all k runs for each training subset size.

In order to show that the classifiers generalize across all data sources, we cal-
culate their performance for each individual data source. Table 4.5 shows average
scores on equal numbers of positive and negative examples per convention. We
see very similar performance across data sources.

A confusion matrix illustrates how well each classifier differentiates between
positive and negative samples. The diagonal represents the ratio of true positives
whereas the rest of the matrix corresponds to false negatives. Rows of the confu-
sion matrix are normalized by using the total number of examples having a certain
true label, so numbers represent the percentage of samples from each convention
matched by each classifier.

Figure 4.3 shows the confusion matrix for each classifier using the Tcalibration

threshold. To create the confusion matrix we select only sentences with a single
label. Values in the cells represent the amount of sentences matched by each
classifier for each convention. High values between 0.6 and 0.92 accuracy are in
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Figure 4.3: Confusion matrix of EC classifiers using the obtained calibration
threshold

the diagonal axis of the matrix – the classifiers are correctly differentiating. The
Classifiers for the Civic and Market conventions are performing best.

4.6.1 Evaluation of Conventions

In the following evaluation, we discuss our EC classification results, compare
the conventions in AI and non-AI subsets of our dataset, and present the co-
occurrences of conventions.

Figure 4.2 shows the distribution of both AI and non-AI related sentences for
each data subset. In general, the prevalence of the different conventions is fairly
aligned with the estimated ones. Regarding the different conventions, the Indus-
trial convention is very dominant in Github (AI and non-AI) and S2 (AI) with a
proportion of about 50%. As Github consists mainly of technical descriptions and
standards and S2 of scientific abstracts, this is in line with our expectations. In S2,
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Figure 4.4: Co-occurrences of conventions in the predictions for AI subsets. Val-
ues in the matrices are normalized by the number of sentences in each data source.

the Civic, Domestic, Market, Project and Renown conventions are rarely present,
while the Inspired convention refers to innovative approaches and the Green con-
vention links with ecological projects. In Github, the Market and Project con-
ventions – somehow stronger in the non-AI texts – are quite dominant, referring
to licensing or commercialization for the first one and to the field of computer
science, programming, and software for the second one. In contrast with these
two subsets, the Industrial convention shows a lower percentage in Reddit, to-
gether with the Green convention, while it is dominated by a cluster consisting
of the Inspired, Domestic, Civic (at least for the AI-texts), Project, and Renown
conventions. Therefore, Reddit seems to be more balanced, due to the presence
of a different set of conventions, reflecting the variety of topics and approaches
in its discussions, while Github and S2 are dominated by one or two conventions.
Generally speaking, the Green convention is scarcely found (at least in Github
and S2), showing that ecological and sustainable considerations are of little im-
portance in these two subsets. The Market convention often refers to questions of
(commercial) licensing or business models, it was not excepted in the scientific
articles, while it should be more present in software development.

The comparison of conventions of AI and non-AI samples reveals interest-
ing tendencies for all three sources. By carefully looking at the results shown in
figure 4.2, a positive ratio can be observed between AI and non-AI domains for
two conventions: the Domestic and the Project one. Only the Inspired convention
shows a negative ratio for all three subsets, confirming that AI related texts are
more related to innovative and inspired approaches than non-AI ones. Interest-
ingly, the ratio for the Industrial convention differs between the three subsets with
nearly no difference in Github, a positive ratio in Reddit and a negative one in S2,
highlighting the importance of standardization and scientific methods

Figure 4.4 shows the co-occurrences of conventions in the AI related items.
The most interesting finding is the dominant correlation between the Industrial
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and Inspired conventions in the S2 subset, confirming its specific scientific char-
acter. In Reddit, validating the findings from figure 4.2, we can observe a rather
balanced proportion and co-existence of conventions, with slightly higher corre-
lations in the combination of the Domestic and Inspired as well as the Domes-
tic and Project conventions. This is in line with reflections on traditional and
experienced-based ways of doing, as well as discussions on power and hierarchy,
present in the Reddit subset. In contrast, Github shows a slight surplus in the
combination of Industrial and Inspired, as well as Industrial and Market with per-
centages over∼10%, showing the content alignment of this subset. In none of the
subsets, we find significant co-ocurrences with the Civic convention, indicating a
certain disconnection between civic values and the other dominant conventions in
the AI domain.

Qualitative sentence evaluation

Automatic convention classification goes beyond merely detecting significant buzz-
words. The correct attribution of a label has to include the buzz words, which refer
to the ‘worth’ of each convention. Additionally and more important it also must
include a corresponding practical test (see [34]), which checks the corresponding
‘worth’. In the case of the Industrial convention that is a procedural test, as any
process can be only classified as Industrial - in the sense of the EC - if it develops
or produces something efficiently and productively in a standardized way. A label
is only correct if this test is passed.

To illustrate this procedure and show the reliability of our classifiers on the
basis of these requirements we compare a list of three sentences pairs (one pair per
data source). The sentence pairs consist of one high accuracy (‘good example’)
and one low accuracy (‘bad example’) sentence per data source from the Industrial
convention:

In example (2) from S2, the buzz-word “effective” does not automatically
mean that this sentence belongs to the Industrial convention. Simple technical
descriptions such as example (4) from GitHub does also not imply any conven-
tion, although technical, scientific or industrial words are used. In contrast, (1)
(extracted from S2) or (3) (extracted from GitHub) include buzz-words, such as
“approximation", “significantly" , or “optimization" and they refer to standardized
processes. Accordingly, they belong to the Industrial convention. The Reddit ex-
ample (5) implies modelling as the central process for obtaining efficiency (cor-
responding with the industrial convention), while the example (6) from the same
data source does not refer to an industrial standardized process and therefore cor-
responds to the Domestic convention.

We carry out several iterations of labelling, training and qualitatively analyz-
ing the conventions. The analysis of sentences based on these conventions in-
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S2
(1) Graph partition can then be formulated as searching an optimal interface in

the node weighted directed graph without user initialization.
�

(2) Effective soil mapping on farms can enhance yields reduce inputs and help
protect the environment.

�

GitHub
(3) It is often able to determine a good approximation of the true pareto front in

significantly less iterations than genetic algorithms.
�

(4) Full documentation is available at: docs.sypht.com repository is an
apache licensed java reference client implementation for working with the
api.started to get started you’ll need some api credentials i.e a ’client-id’
and ’client-secret’.

�

Reddit
(5) They use it to model things like large scale particle interactions in a more

computationally efficient way.
�

(6) I would actually prefer if it generated Java code so I could tweak it by hand. �

cludes context information of the coded threads in order to determine the ‘practi-
cal test’ and achieve a first step in grasping the social complexity of the EC in an
automated classification.

4.7 Discussion
The EC and the automatic classification of the conventions offer a comprehensive
insight into the dominant conventions and moral orders in the AI-field, partly link-
ing and explaining the functioning of the five primary categories of motifs listed
in Related Work (Section 4.2)s. For instance, the Inspired convention can be asso-
ciated with the categories of intrinsic motivation and learning (e.g. development
of personal skills or knowledge), whereby the latter is also partly represented by
the Domestic convention. Furthermore, the category of external rewards can be
attributed to the Market convention and community recognition to the Renown
convention. An important finding in this regard is that the Industrial convention,
which turned out to be one of the most dominant ones in the subsets investigated
(see section "Evaluation of conventions"), is not reflected by any of these motifs.

There are ongoing discussions and research on the backgrounds and moral or-
ders, which influence the development of the digital world. In this context, [46]
refers to the evolution of the internet as the result of the intersection of diverse cul-
tures, from the purely ‘geek’ and technocratic to the out most capitalist, melded
with that of hackers and libertarians. The present study of the prevailing con-
ventions in AI research, development and discussions continues and deepens this
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reflection, showing that there is a certain dominance of a techno-meritocratic cul-
ture (reflected in the Industrial convention), at least in the scientific and technical
descriptions of the AI projects. Less influence – depending on the specific project
and topic – of the virtual communitarian culture (the Civic and partly Project and
Green conventions), the entrepreneurial culture (reflected in the Market conven-
tion) and the hacker culture (the Domestic and Inspired culture). In contrast, the
Reddit subset includes blog posts, conversations and discussions on a variety of
issues related to the field of AI, including ethical reflections, historical analysis,
utopian and dystopian views. Hence, in the qualitative analysis done by Mayring
et al. [137] of the randomized sample of Reddit subset, pre-classified by the au-
tomatic classifiers and focusing on the concurrence of conventions (in the same
sentence or in consecutive sentences), no dominance of one or two conventions
is observable. Rather, Reddit seems to be characterized by a couple of specific
co-occurring conventions, which seem to be central to the discussions about AI,
indicating possible (ethical) conflicts. There seems to be, e.g., an ongoing con-
flict between the Industrial and Domestic convention around AI, reflecting dis-
cussions about the desirability and possibility to develop human-like machines or
machine-like humans, and the superiority of human vs. AI. The EC and the auto-
matic classifiers with its underlying concepts of standardization and optimization
(in the case of the Industrial convention) and trustworthiness, hierarchy and ex-
perience (in the case of the Domestic convention) illustrates these conflicts. The
automatic detection of conventions, as proposed by the classifiers, is able to shed
light on the underlying moral assumptions in the AI (and other) fields. By this,
it supports a deepened and mutual understanding of different points of view and
moral backgrounds.

Our work involves a large amount of human knowledge and interaction. Ac-
cordingly, different types of bias might occur. Olteanu et al. [146] report a list of
biases in areas such as data acquisition and data querying; data filtering and also
biases in results interpretation and issues with the evaluation and interpretation of
findings. We briefly discuss the measures we take in this work to promote neu-
trality and mitigate those biases to the best of our capacities. Due to the size of
the content of both Github and Reddit, strong preselection is necessary. This is
not the case for S2, where we gather the complete publicly available dataset and
perform subsequent steps on the whole dataset. We attempt to gather data from
GitHub and Reddit in an equal manner. To ensure extensive discussion and good
quality, we collected data from repositories of all different levels of popularity
(GitHub) and all the threads with more than 4 up votes (Reddit). To limit the bias
in individual researchers’ labeling in the active learning pipeline, the researcher
triangulation and the sampling process from different levels of confidence both
aim to mitigate this problem. We evaluated the EC model with well-known per-
formance metrics by convention and by data source to study potential systematic
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differences and incorporated qualitative analysis. We aim to foster reproducibil-
ity as well as discussion on methodological approaches, so we release our dataset
models and experiments to the research community.

4.7.1 Limitations
We assume similar classifier performance on the AI and non-AI portions of the
dataset, although we do not carry out an empirical evaluation of non-AI portions
of our dataset; the results for both the AI and non-AI portions in figure 4.4 support
this assumption. Furthermore, we assume the wording to be similar in the AI and
non-AI portions of the dataset. Even as each data source belongs to a different text
type, all data sources for both portions come from the computer science related
technical domain. However, this assumption remains speculative and as such it
would benefit from empirical evaluation on labeled sentences.

In the approach of this chapter, items in the dataset are analyzed on sentence-
level. According to the EC literature, conventions are better reflected on discus-
sions where individuals need to defend their positions. Future work can focus in
using the current shape of the EC classifiers to analyze other data sources that, if
having a conversational nature, will be better confronting and reflecting the con-
ventions.

Further, we have observed that the proposed techniques are highly dependent
on the collection of high quality training data. Although an approach to facilitate
such gathering has been proposed, further advances might be required to reduce
the amount of manual work to be done by human annotators.

The EC is a social theory based on and therefore limited to Western political
philosophy. Further, non-Western ’moral orders’ are not reflected by the EC and
the current analysis. But with further training of the models with non-Western-
centric datasets, further conventions might be found, enriching not only the EC,
but widening a global comprehension of morals.

4.8 Conclusion
In this work, we described approaches both to analyze and predict conventions ac-
cording to the EC. We created a dataset mainly from three text sources of scientific
research: chapter abstracts from scientific conferences and software development,
and analyzed the distribution of conventions in each subdomain. We developed
an interactive architecture based on active learning both to support domain ex-
perts in data labeling and select the most valuable items to train ML classifiers.
Preliminary results on the ML classifiers trained on the EC showed promising re-
sults. In an additional study, the results were contrasted with the results from a
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classifier trained on software conventions, and we have shown comparable and
understandable results on both theoretic frameworks.
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Chapter 5

EVALUATING BIASES IN A
TWO-SIDED MARKET
PLATFORM

5.1 Introduction

5.1.1 Motivation

Two-sided sharing economy platforms have changed how business is conducted in
a multitude of domains. They have been particularly disruptive in the real-estate
sector where platforms such as Airbnb have changed the status quo. These plat-
forms typically involve three types of stakeholders: (i) providers of items/services,
(ii) customers seeking to acquire from the providers, and (iii) the platform itself,
which intermediates and matches providers and customers based on their prefer-
ences. The explosive growth of these platforms in the real estate sector has been
at the core of various political battles at some of the largest cities in the world.
Advocates of the sharing economy argue about the benefits they can bring to soci-
eties, such as extra income, better distribution and allocation of resources, and the
creation of new opportunities for cities and municipalities.1 On the other hand,
critics argue that the costs generated by the platforms surpass their benefits by far:
they are very appealing business options so that the main side effect of their wide
adoption is that they worsen what is an already troublesome housing shortage in
particularly attractive areas, driving up rental prices and, ultimately, boosting gen-
trification. Concerns also exist about the potentially discriminatory impact of their

1Airbnb study: Airbnb related activities contributed with up to 175M$
to the city of Barcelona. https://www.airbnb.es/press/news/
new-study-airbnb-community-contributes-175-million-to-barcelona-s-economy
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algorithms.
The main goal of our algorithmic evaluation is to identify and quantify existing

biases in different versions of the platform, showing the trade-offs and potential
harms of introducing a machine learning based functionalities, also accounting
for the different recommender systems used during the application life-cycle. In
contrast with most previous work, our research focuses on the biases exhibited
by the system through its recommendations, instead of analyzing how the users
behave on the platform [11].

The particular design of the platform, with a baseline method running perma-
nently, executed together with ML-based methods evolving over time, allowed us
to extract conclusions in comparison to the baseline.

Our findings show that the introduction of a ML-based algorithm increases the
probability of matching for the majority of users. This means that the recommen-
dation system effectively facilitate the finding of room-mates or flat-mates.

At the same time, the ranking algorithms utilized in the application exhibit
various types of inequalities in terms of performance, significantly affecting the
experience and opportunities of some groups of users. Among other differences,
the system performance varies across demographic groups based on self-declared
gender, sexual orientation, age, and main spoken language. Moreover, we observe
that minority groups – groups already disadvantaged or with smaller prevalence in
the population – experience lower performance of the system or more differences
on its functioning, depending on the particular model they are exposed to.

Research questions

Our research questions are related to the stages of the pipeline depicted in Fig-
ure 5.1 and are the following:

RQ1. How effective are the different recommendation methods? If we con-
sider the baseline random recommender as a control, and each of the ML-based
systems as a treatment, we would like to answer this question considering both
average effects (treatment versus control) as well as heterogeneous effects (dif-
ferent treatments). In the next section we describe suitable metrics for measuring
effectiveness.

RQ2. Are there any disparities arising from the usage of ML-based rankings?
This is also a question that we address both at the level of average effects as well
as heterogeneous effects through appropriate metrics.
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5.1.2 Contribution

In this chapter we focus on the latter problem. Specifically, we present a com-
prehensive and independent algorithmic evaluation of a recommender system of
a platform used in the real state market,2 designed specifically for finding shared
apartments in metropolitan areas. Our examination enjoys full access to the in-
ternals of the platform, including details on algorithms and usage data during a
period of 2 years. More in detail, the platform aims to help listers, i.e., land-
lords/landladies or room owners, find appropriate seekers, i.e., users looking for
a room to rent. The recommender system facilitates matching and interaction be-
tween seekers and listers, with profile-based matching functionalities resembling
those of dating platforms [104]. Listers can “like” the profiles of seekers and send
a request to them. Seekers can accept such requests in case they like the offered
room. If a lister sends a request to a given seeker and the latter gives a positive
response to it, then a match occurs, which lets them talk through an in-app chat
service to arrange a meeting and potentially sign a rental contract.

The platform mediates the connections between providers (listers) and cus-
tomers (seekers), and as a mediator it has the potential to either facilitate or ham-
per the emergence of societal biases. Indeed, the bias against certain minorities,
if left unmitigated, can be amplified through its recommendations [160]. These
biases are particularly dangerous in this sector, where the fundamental right to
adequate housing [200] might be compromised.

5.1.3 Chapter structure

This chapter is structured as follows:

Section 5.3 provides the details about the platform and the setting for our
analysis. It also present the specific research questions that are addressed in the
remainder of this paper. Section 5.4 presents the methodology and the specific
utility metrics adopted. Section 5.5 describes our dataset and provides some gen-
eral statistics. Finally, Section 5.6 present in details our experimental results and
findings.

The next section describes previous work related to the analysis presented here
and provides some background.

2Company name omitted.
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5.2 Related Work

5.2.1 Access to housing

Experiments conducted throughout the last decades reveal discriminatory behav-
iors and practices that negatively affect minorities when trying to buy or rent prop-
erty. Chambers et al. [49] debate the idea of sustainable livelihoods, that as they
explain, require social equity among other things to achieve sustainability. They
expose their ideas with a special focus on the rural poor and other minorities.
Turner et al. [199] describes a series of experiments in 23 metropolitan areas
in the United States, revealing serious differences between white and minority
citizens on different aspects related to access to housing for renting or buying.
Wachter et al. [208] show that there are persistent differences in homeownership
rates across racial and ethnic groups in the US.

More recently, an experiment conducted by the Barcelona city hall showed
how prejudices decrease the opportunities of finding housing to buy or rent for
some groups. In particular, it was observed that LGBTQ seekers or those with
Arabic sounding names had a lower chance of being scheduled for visiting a flat
[74].

In contrast with these previous works, our experiments are based on an online
platform in which the contact between users is mediated and influenced by a rec-
ommendation algorithm. Although the observed behaviour in the system could be
a mirror of societal biases contained in the training data of the machine learning
system, those biases, if not mitigated, can be amplified by an algorithm.

5.2.2 Algorithmic fairness in double-sided markets

Analyzing the case of Airbnb, Quattrone et al. [160] outlined the difficulties of
creating regulatory policies in a changing environment. They collected a set of
recommendations for regulating Airbnb, contributing to the general idea of “algo-
rithmic regulation”, which advocates for the analysis and use of large sets of data
to produce evidence-based regulations that are responsive to real-time demands.
Shur et al. [192] analyze a double-sided market in the context of ride hailing plat-
forms, giving an special emphasis to the role of the riders (producers). Hutson
et al. [104] analyze a similar setting, in their case online dating apps, revealing
different inequities based on race and/or sexual orientation.

Our work contributes to this research as the first work that studies how differ-
ent versions of a system facilitate the goals and preferences of users in different
sides of the market. Also, we quantify the effects of using a ML-based algorithm
in comparison with a rules-based random baseline.
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5.3 Setting
The platform analyzed in this work corresponds to a system that aims to help
matching users having available rooms in their flats, with potential new tenants or
flat-mates/room-mates. This setting can then be described as a two sided market,
where listers supply rooms that are in demand by seekers. Most of the interactions
are done through a mobile app that offers a recommendation list for the listers.

(1). Random 
+

Treatment

Qualifying profiles

(2). Lister
 preferences

Recommenda�ons

(3). Seeker
 preferences

Requests

Answers

Figure 5.1: Platform’s recommendation pipeline.
As depicted in Figure 5.1, listers receive recommendations in the form of an

ordered list of ∼20 recommended seeker profiles. These profiles come from a
pool of qualifying profiles (e.g., seekers searching for a room in the area where
the lister’s room is located), from where recommendations are selected. This
selection might include profiles selected by the baseline method interleaved with
profiles prioritized by a ML-based recommender system. This allows the platform
to monitor in real time the performance of each of the RecSys versions compared
to the random group, using a within-subjects [176] A-B testing [115]. The same
user can be exposed to A or B treatments in different visits or receive recommen-
dations given by A and B in a given recommendation list.

In the following, we refer to the baseline system as random and to each of the
ML-based systems as a ranking, given that their main difference is how they rank
qualifying seekers. We analyze the performance of random and ranking separately
to understand their differences, and the implications of introducing a ML-based
system.

Once the list of recommendations is shown to the listers, they select and can
send a request to a subset of seekers according to their own preferences. After
the listers send a request, seekers receive a notification for each of them. These
requests can, in turn, be accepted or rejected by seekers.
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In the following, we consider all the ranking systems together as opposed to
the random system. However, we note that different recommendation models that
were developed at different points within the life cycle of the platform are used,
and their training sets are slightly different. Although it is something outside the
scope of the present chapter, and a limitation of our work, each new version of
the ranking system may have been influenced by the behavior of older versions,
and this could lead to feedback loops amplifying biases for each new version of
the system, as an example of the cyclic nature of bias 1.1. For the purpose of this
study, we compare the performance of the different models, including the random
system, as isolated instances, whereas their recommendations can appear together
in the recommendation lists. However, each ranking model is optimized for the
same objective: to maximize the expected probability of a match.

In this setting, biases can be observed directly (i) in the ranking produced by
each system, (ii) in the lister preferences when selecting among the ranked items,
or (iii) in the seeker preferences within the received requests.

5.4 Methodology
The methodology that we use to analyze whether the system leads to biased or
discriminatory outcomes follows previous studies [175, 78] and consists of four
main steps:

1. Identification of potentially disadvantaged groups.

2. Selection of effectiveness and disparity metrics.

3. Computation of relevant metrics for each stage.

4. Comparative analysis of treatment and control settings across groups.

Identification of protected groups

The main purpose of this initial step is to identify potentially discriminated [172],
disadvantaged groups whose lack of privileges might be replicated or amplified
within the platform. We consider four groupings that can lead to discrimination
in this scenario and that we can evaluate with the available data: i) gender, ii) age,
iii) languages spoken, and iv) “gay friendly” profiles. We remark that the data
made available to us did not include any identifier that allows us to link these
attributes to individuals, nor we made any attempt to do so. We also maintained
data security by keeping the dataset within our research infrastructure, which can
only be accessed by researchers in our team directly involved in this research.
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Self-declared gender. Users specify their gender in a binary form (male/female)
when registering for the app. The cases where the user did not inform their gender
are discarded from the analysis.

Self-declared age. Users also can specify their age. Following [139] we con-
sider the individuals in the range [18− 75] and then, looking at the distribution of
data, create 4 different groups: (i) 18-34 (millennials), (ii) 35-54 (generation X),
(iii) 55-75 (boomers) and (iv) < 18 or > 75 (outlier)

Languages spoken. The city from which we use data (Barcelona) is a cosmopoli-
tan city hosting people from a variety of places. The main languages declared by
users of the platform in this city are Catalan, Spanish, English, and Italian. Basi-
cally all Catalan-speakers users of the platform in Barcelona also speak Spanish.
Hence, we compare these majority languages against cases in which the listers
indicated other languages (such as Arabic).

“Gay friendly” profiles. Many descriptions of listed rooms, as well as profiles
of individuals, included phrases such as “gay-friendly” or even “only gay-friendly
people are welcome.” Users are not asked to declare sexual orientation in this plat-
form, but as sexual orientation had been found to be one determinant in access to
housing [74], we consider that analyzing this “gay friendly” signal was important.
We use a set of phrases that are variants of “gay friendly” to detect descriptions
fitting this category.

Understanding that users in each side of the market might have different goals
and/or preferences, we additionally separate people according to their role within
the platform (lister or seeker).

Utility metrics

To define the metrics, we first need to introduce some notation. Let U represent
the set of all users, with UL corresponding to listers, and US corresponding to
seekers, in such a way that U = UL∪US . We remark that a small fraction of users
(≈ 4%), are listed as both room-owners as well as room-seekers.

Let H represent the set of rooms, and H : H → UL associate each room
with its lister. Let R ⊆ H × US describe the recommendations presented to
the listers, i.e., the different seekers selected for each room. Let X ⊆ R be
the requests created from such recommendations, i.e., the instances in which the
recommendation was followed by a lister who contacted a seeker, and finally let
A ⊆ X the instances in which the contacted seeker answered positively to the
request.

From the identification of the protected groups we can generate several parti-
tions (e.g by gender, age, language spoken and sexual orientation). Users can be
partitioned: (i) by gender (G), (ii) by age (Y), , (iii) by language spoken (N ) and
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(iv) by “gay friendly” (F). We use the symbol P to reference the complete set of
partitions.

Some of our utility metrics are independent of the role that a user has in the
system. For instance, we assume that users in both sides want to minimize the
effort required to find a roommate. Other metrics recognize that in some cases
users may have opposite goals. For instance, listers want to minimize the income
they obtain by renting their rooms at the highest possible price, while seekers seek
to rent a room at the lowest possible price, all other things being equal.
DCG - Discounted Cumulative Gain (for listers)

This is a measure of ranking quality, which in our case measures the value of
a list of recommendations given to a lister. The metrics consider the positions in
the ranking list of the items that a user finds relevant [107]. In its more general
form, given a list of recommendations R =

〈
(r, u1), (r, u2), ..., (r, u|R|)

〉
for a

room r ∈ H:

DCGR =

|R|∑
i=1

wi · vi

where wi is a discounting factor that decreases with i, and vi is the relevance of
the i-th recommendation in R.

A common choice for the discounting factor is logarithmic discount: wi =
1/ log2(1+ i). The relevance of the i-th recommendation can be defined as the ex-
tent to which H(r) ∈ UL, the lister of room r, will consider ui ∈ US an appropriate
candidate for renting the room. The discounting factor stresses the requirement
that the most useful recommendations should appear near the top of the list.

We use the normalized version of DCG that is divided by its maximum possi-
ble values, so the resulting nDCG is in the range [0, 1].
CR - Conversion Rate (for listers)

A “conversion” in online marketing indicates a successful traversal through
a funnel, e.g., becoming a purchasing customer. In our case, success for a lister
means finding of a suitable seeker, hence CR measures the probability that a
request sent by a lister is accepted. If X ℓ are all the requests performed by lister
ℓ ∈ UL, andAℓ are all the requests that are accepted by the recipient seekers, then:

CRℓ =
Aℓ

X ℓ

CTR - Click Through Rate (for seekers)
This indicates the probability that a seeker is contacted after being shown to

a lister. Similar metrics have been used before to approximate item relevance for
users [139], and CTR is a common metric used to evaluate, for instance, the rele-
vance of web pages in personalized advertisement [167].In our case, for a generic
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seeker s ∈ US , we consider the fraction of listers who click on him/her over the
total number of listers that saw him/her. Let Rs be the set of recommendations
containing the seeker s and X s the set of requests created from such recommen-
dation by the listers:

CTRs =
X s

Rs

es – Exposure (for seekers)
Differences in exposure have been recently studied to evaluate whether rank-

ing models used in search and recommendation treat people from different groups
similarly [185]. In our setting, we consider Rs, which are all the recommenda-
tions including a particular seeker s, and the position p(s, r) of the seeker s within
a particular recommendation r ∈ Rs.

es =
∑
r∈Rs

wp(s,r)

where wi is a discounting factor that decreases with i, as in the computation of
DCG.

Assuming to consider a subset Sa ⊆ US , where all the seekers considered in
the subset are characterized by the property a (e.g. a sensitive attribute), we can
quantify the disparate exposure received by the group as:

DT (Sa) =

∑
s∈Sa

es∑
s∈US

es
× |US ||Sa|

Where |Sa| and |US | corresponds to the size of the two sets. This index is
inspired by the metrics already introduced by [185]. This non-negative metric
DT (Sa) is equal to 1 when the exposure generated for the group Sa is proportional
to its relative size, if DT (Sa) < 1 then the group is under-exposed while for
DT (Sa) > 1 the group is over-exposed.

5.5 Dataset description
The platform that we study operates in several large cities across the world. We
select the city in which the platform has its largest use base, Barcelona. The
dataset gathered for this research contains 4,296,000 rows describing recommen-
dations issued during a contiguous 30-months period from January 2017 through
June 2019. It contains information about 61,997 unique users. Each recommen-
dation includes a lister and room for which the recommendation is created, and
the seeker that is recommended for that room and lister. Including the position in
which each seeker was listed and the utility score assigned by the ranking system
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to it. Additionally, when the lister initiates a request from the recommendation,
we have information that a request was initiated and about the response from the
seeker addressed by the request. Responses by the seekers include accepting or
rejecting the request, or leaving it pending, which means the request expires when
the room is rented or becomes unavailable. The dataset also contains demographic
information about the age, (binary) gender, level of studies, work occupation, and
spoken languages for both seeker and listers.

Model Listers Seekers Recommendations Requests Conv. Rate

BSL 35.72K 6.76K 1.78M 343.82K 19.37%
CF 15.35K 794.00 200.59K 45.72K 22.79%
MF 9.78K 7.83K 2.54M 568.37K 22.37%

XGB-1 4.02K 1.21K 396.54K 80.45K 20.29%
XGB-2 10.47K 5.07K 237.66K 84.54K 35.57%
XGB-3 3.80K 3.18K 384.31K 101.22K 26.34%

Table 5.1: Summary of the number of recommendations created with the different
models through the operation of the platform. BSL is the random baseline; the
other models are based on Machine Learning.

General statistics

The dataset contains baseline and ML-based recommendations. The baseline rec-
ommendations (BSL) are based on a random selection of available seekers for a
room. They have always been provided by the platform, throughout its entire op-
eration, and are used as a control. The ML-based recommendations have gone
through several re-design iterations, including the following models:

• Collaborative filtering (CF). A collaborative filtering model trained to
maximize the probability that listers send requests to the recommended
seekers.

• Matrix factorization (MF). It corresponds to an instance of a Factorization
Machine inspired by the model proposed by [166]. It included features from

Table 5.2: Percentage of seekers (S) and listers (L) belonging to different groups.
Male Female Baby-boomer Generation-X Millenial Outlier Eng-Ita-Spa Other No-gay-friendly Gay-friendly

Model L S L S L S L S L S L S L S L S L S L S

CF 44.04 50.41 55.96 49.59 3.78 1.53 42.58 25.00 53.26 73.3 0.39 0.17 88.55 82.84 11.45 17.19 99.46 99.67 0.54 0.36
MF 43.80 56.22 56.20 43.78 4.13 1.44 37.59 22.7 57.96 75.71 0.32 0.15 98.14 99.05 1.86 0.95 99.30 99.19 0.70 0.81

XGB-1 45.00 59.86 55.00 40.14 3.72 1.15 36.75 22.61 59.15 76.00 0.38 0.25 94.45 96.94 5.55 3.06 99.26 99.15 0.74 0.85
XGB-2 46.69 43.23 53.31 56.77 4.03 1.33 39.49 22.67 55.98 75.90 0.50 0.10 98.88 99.50 1.12 0.50 99.47 99.27 0.53 0.73
XGB-3 43.76 55.22 56.24 44.78 4.03 1.54 37.53 23.4 57.98 75.04 0.46 0.02 99.8 99.76 0.20 0.24 99.52 99.18 0.48 0.82

BSL 43.49 51.22 56.51 48.78 4.10 1.67 38.23 25.02 57.29 73.15 0.38 0.15 94.75 89.52 5.25 10.49 99.42 99.43 0.58 0.58
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the rooms.

• XG-Boost During the operation of the platform, different versions of XG-
Boost (gradient boosted decision trees) have been used: (i) XGB-1, first
version of the model, which optimizes the probability of sending a request;
(ii) XGB-2, second version, which optimizes the probability of a match, fol-
lowing the approach introduced by [206], (iii) XGB-3, third version, which
optimizes the probability of matches leading to actual rentals.

The number of recommendations generated by each method, as well as the time
periods in which they were generated, are presented in Table 5.1. A summary of
demographic information is reported in Table 5.2. In the following, we will use
the acronym RS to refer to all the ML-based ranking systems together, in contrast
with the baseline BSL.

5.6 Results
In this section we report our analysis and our findings with respect to the research
questions introduced in the subsection 5.1.1.

Observed performance and disparities in the recommendations
We begin the evaluation by analyzing the first step in the recommendation

pipeline (Figure 5.1). This part of the funnel selects a set of qualifying profiles,
i.e. the list of suitable seekers according to the preferences selected by the lister
for a room, then it ranks them and shows the top 20.

Lister side. We first compare, from the perspective of the listers, the relevance
of recommendations selected by the random baseline (BSL) against the perfor-
mance of recommendations created by any of the ML-based ranking system (RS).
We assess the quality of the recommendations, computing the nDCG by consid-
ering that the relevant items are the seekers to whom the listers send a request.
This utility metric is computed at individual level and then aggregated for each
demographic group.

The random BSL exhibits an average nDCG score of 0.42. The performance
by demographic groups is shown in Figure 5.2.

The introduction of the ML-based ranking system leads to an increase in the
overall performance, with an average nDCG score of 0.49. However, the increase
in performance of the ranking system is not equal across the different demographic
groups, as shown in Figure 5.3.

The observed differences in the nDCG score indicate that most groups obtain
better recommendations, except for the “Gay-friendly” group, one of the minori-
ties considered in our analysis, who got a decrease of 2.3% of the nDCG score.
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Figure 5.2: nDCG score of recommendations for BSL.
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Figure 5.3: nDCG score difference between the RS and BSL across demographic
groups.

We next compare the performance of individual models. Figure 5.4 reports
the difference in performance between ML-models and BSL across demographic
groups.

We observe that XGB-2 is one of the best in terms of nDCG for most of the
groups. On the other hand, the MF model is the more robust, since the differences
in performance among groups are minimal. It is also the only model reporting a
gain of performance w.r.t. the random baseline for the “Other languages” group.
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Figure 5.4: nDCG difference between ML-models and BSL.

(a) (b) (c) (d) (e)

Figure 5.5: Exposure distribution comparison (log-scale) between BSL and RS:
total (Aggregated) and by demographics (Gender, Age, Language and Sexual-
Orientation). The dashed lines in each violin plot represent the first, second and
third quartile.

CF is the one showing the larger differences in performance by groups. In par-
ticular “Males", “Millenials", “Spa-Eng-Ita" and “No Gay-friendly" obtain better
recommendations with the random baseline than with CF.

Observation 1 ML-based ranking models have in general a positive av-
erage effect in recommendation performance, but different models lead
to heterogeneous effects in terms of quality of recommendations for dif-
ferent groups.

Seeker side. After analyzing the performance obtained by the listers to whom
recommendations are presented, we consider the experience of the recommended
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users, i.e., the seekers. To evaluate the recommender systems from the seekers’
side, we focus on the exposure they receive. As in the previous section, we first
look at the average effect of the ML-based ranking systems (BSL vs RS), then
perform an analysis per model.

In Figure 5.5 we report the exposure distribution for RS and BSL. Consistently
in all the plots we can observe a heavy tail for RS on the larger values of exposure.
This indicates that introducing the ML-based model leads to larger disparities
in exposure among seekers. This effect results to be stronger for the groups of
“Females", “Millennials", “Other" (language) and “No Gay-friendly".

Observation 2 The introduction of the ML-based recommendations in-
creases the disparity in the exposure distribution: some people get much
more exposure than the rest.

We next analyze the exposure for each model across demographic groups.
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Figure 5.6: Exposure for the different models across demographic groups.
Figure 5.6 reports the exposure that different models give to different demo-

graphic groups. It shows that on average the exposure is larger for “Females" than
for “Males" for most of the models. Regarding the “Age" partition, the group with
more members, “Millennials”, obtains a fairly constant average exposure with a
little increment for last versions of the models where as the other groups obtain
lower exposure in general. For the remaining two partitions (“Spoken languages”
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and “Gay-friendly”), we observe how the majority groups obtain an exposure
close to 1, meaning that they are shown a numbers of times closely correlated
to the size of their group, where as the two minorities experience more variance
on their exposure, depending on the individual model that is recommending them.

Observed performance and disparities in the requests

Lister side. We next use the CR (Conversion Rate) metric to quantify the per-
formance of the system for the listers. In general, the random baseline had a CR
score of 10.36, which implies that on average, a generic lister needs to send ≈ 10
messages to recommended seekers about a room to get at least one seeker to ac-
cept it. By analyzing the CR score aggregated by groups, we obtain the results
reported in Figure 5.7. In such plot, we first observe that the system does not
present relevant differences of performance along the different subgroups. We
can also observe that male listers have lower CR score than females, inverting the
trend observed for the nDCG metric used to evaluate the quality of the recom-
mendations. This means the recommendations show to men appear to be more
relevant than those shown to women as they click on the top ones more, but once
men issue a request to a seeker they have smaller chances than women of getting
their request accepted.
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Figure 5.7: CR score for BSL across demographic groups
Looking how the CR score changes (Figures 5.8 and 5.9 ) with the addition

of the different ML-based models, we observe heterogeneous variation of perfor-
mances along the groups. In Figures 5.8 we notice how two subgroups do not
benefit from the use of the RS (“Baby-boomers" and “Other languages"). Fig-
ure 5.9 shows the relevant differences in CR across models. None of the models
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Figure 5.8: Conversion Rate (CR) differences between each ML model and BSL.
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Figure 5.9: Conversion Rate (CR) differences w.r.t. BSL for each model.

is consistent in terms of CR along the groups, where XGB-3 and CF result to
be the ones improving the most the baseline. CF is also the one which leads to
biggest difference in performance in “Age" group. XGB-2 is capable to generates
the smaller differences in CR for the subgroups within “Gender" and “Age". MF
and XGB-1 are consistently worse than the baseline, since we observe a CR larger
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Figure 5.10: CTR differences across different models

than the baseline, only for the “Gay-Friendly" group.

Observation 3 The addition of ML-based rankings leads on average to
improvements in terms of conversion rate, but the levels of improvement
are substantially different from one model to another.

Seeker side. To analyze the effectiveness for the seekers we adopt the Click
Through Rate (CTR): as usual, such metric is evaluated for each model and
across demographic groups. Figure 5.10 reports the results of such analysis. As
the baseline model (BSL) is a random selection of seekers, it may better reflect the
“raw” preferences of the listers. When comparing against the ML-based models,
we notice how the CTR does not improve equally across groups. In all the models,
except for XGB-2, we observe a significant difference between women and men:
different strategies and models do not reduce the gap in the two values of CTR.
Only XGB-2 is able to obtain the same benefits for both.

Additionally, focusing on the “Age" attribute, we see how the “Millenials" ob-
tain higher CTR along all the models while, “Generation-X" and “Baby-boomers"
subgroups are always less clicked. The gap between the three categories is in
some cases partially mitigated (XGB-2 and XGB-3) but never reduced completely
to zero. In the partition by “Spoken languages", while the baseline model shows
a slightly higher CTR for the “Other languages" group, this distance is strongly
reduced along the other models. We also notice how all the XGB models flip
the order of the two subgroups, in particular this phenomenon appears stronger
in XGB-2. Eventually, we observe a systematic gap of preferences between the
two subgroups in the “Gay-Friendly” partition. The “No Gay Friendly" subgroup
experiences an average positive difference in CTR of 5%, except for the case
of XGB-3, which leads to same CTR. Finally, we also see how XGB-2, which is
optimized for matches, is reflected here with a gain of CTR for all the groups,
probably explained by the fact that such model is doing a better work on recom-
mending seekers to the listers that will be interested on them.
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Observation 4 Increases in Click Through Rate (CTR) by the ML-
based recommenders are not consistent across groups. The changes in
CTR are not aligned with the changes in exposure across groups and
models.

Performance and equity trade-off.
In the context of Learning-to-Rank (LTR) [186] defended the necessity of con-

sidering not only ranking utility to the users but also enforce the need of utility-
aware metrics. Adapting this framework, we evaluate the quality of the recom-
mendations that each model provides for the listers, in comparison to a measure
of algorithmic fairness, which we define next for both sides of the market. As a
measure of utility or quality, we compute the average of the nDCG scores mea-
sured for the different groups. We call this new metric Balanced nDCG, which
corresponds for a generic model m:

BalancednDCG(m) =

∑
Pi∈P

∑
a∈Pi

nDCG(m, a)/|Pi|

N

where N corresponds to the cardinality of all the possible partitions defined by de-
mographics. In our specific case, considering all the subgroup, we have N = 4. On
the other side, we want also to highlight potential discrepancies in performance
between demographic groups, in order to compare with the quality measure de-
fined above. To do so, we quantify the algorithmic fairness of each model using a
metric inspired by the notion of demographic parity, which states that each demo-
graphic group should receive the positive outcome at equal rates [67]. We trans-
late this context into two different metrics, one for the listers, one for the seekers.
For the listers, we define a measure of disparity based on the average standard
deviation of nDCG scores across the demographic groups, called σnDCG. To
define the disparity metric for the seekers, inspired by [186], we look at the ratio
of the exposure and CTR by groups:

Dind(a,m) =
es(a,m)

CTR(a,m)
,

Where m is the model selected and a the specific demographic attribute. This
new measure Dind express the alignment between the two measures of quality
for the seekers. It is a non-negative index that gets lower values when the expo-
sure given to the group is lower than the merit observed (CTR). Then, for each
model we compute Dmodel, which corresponds to the average standard deviation
of Dind(a,m), computed as follows:
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Dmodel(m) =

∑
Pi∈P

σPi

|P|
Where σPi

is the standard deviation of Dind observed for all the sensitive attributes
belonging to the Pi. Through the use of this three new metrics we can focus on
two different trade-offs concerning accuracy and fairness: (i) one for the listers,
which is measured comparing BalancednDCG and σnDCG and (ii) the other for
the seekers comparing BalancednDCG and Dmodel(m). In both cases the measure
of accuracy is the same, since it is the metric which quantifies most the quality of
performance for the platform.
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Figure 5.11: nDCG-Fairness tradeoff. Listers between nDCG and disparities per
across groups for nDCG (top). Seekers trade-off between nDCG and Exposure
(bottom).

Figure 5.11 reports the resulting trade-off plots. We observe in Figure 5.11a
that for most of the models improving the average accuracy decreases also the
level of unfairness for the listers. Only the BSL shows lower disparity with lower
performances. While, observing (Figure 5.11b), we notice that improving the
average accuracy of the system tends to slightly increase the level of unfairness
for the seekers. CF model is the only one which results to be lower in accuracy
but also unfair towards the seekers. The BSL model is interestingly unfair towards
the seekers too.
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Observation 5 Improving the accuracy of the system benefits the lis-
ters, increasing fairness (as defined above) among groups. On the other
side, the disparity in exposure seems to be weakly affected by the im-
provement in accuracy.

Disparities in the answers: inequality of incomes

To evaluate the performance and equity for the last step of the recommendations
pipeline, we use a different perspective. Understanding that this last step might
result in an economic transaction in the form of a rental contract, we evaluate
potential inequalities in the incomes users get across different models.

Listers side. This analysis is three-fold: first, we consider the room price assigned
to the rooms uploaded by listers, then, we evaluate for potential differences in such
distribution with respect to the room price distribution in the requests that were
accepted; finally, each model is considered individually to evaluate for potential
differences between them. For this analysis, we discard the rooms with prices that
are outliers (> 1000 EUR or < 200 EUR).

From this assessment, we first can observe that the ranking system does not
imply a significant difference of room price in the accepted requests, with an aver-
age difference of ≈ 2% between the ML-based ranking and the random baseline:
the average for the random system is 414.77 EUR per month, whereas lister make
425.04 EUR per month when exposed to the ranking system in average.

Nevertheless, as result of the analysis, we detect few cases with differences
bigger than 3% in average between the room price in the uploaded rooms and the
resulting room price in the accepted requests (figures were omitted for brevity).
Among these few cases, none of them reach more than 10% of relative difference
in average. Executing a statistically significance test, we find that none of those
detected case is statistically significant for p− value = 0.05.

Seekers side. We then assess whether there are potential differences in the aver-
age price of the rooms accepted by seekers across different models. This analysis
does not reveal any significant difference across any of the demographic groups or
models. The performed evaluation reports an average of 412.77 EUR and 423.78
EUR per month for the random baseline and ML-based ranking systems respec-
tively.
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Observation 6 The observed disparities in the quality of recommenda-
tions shown to listers, probability of listers sending a requests to seekers,
and probability of seekers accepting those requests, do not seem to lead
to substantial differences in the prices at which rooms are rented.

5.7 Discussion and conclusions

Understanding the performance of a sharing-economy platform across all its users
involved is an arduous task that requires to consider multiple aspects in the assess-
ment. In this paper, we approach this task by first considering the role of different
users inside of the platform. To perform our analysis, we need to consider the dif-
ferent goals that users might have depending on the side of the market where they
are located. In this context, we conduct a layer-by-layer analysis, evaluating not
only the system performance but also potential inequities created by such system
for each of the steps in the recommendation pipeline. We also evaluate different
versions of ranking system used during the platform life-cycle, and compare them
to a baseline model based on random recommendations.

Our results show that compared to the random baseline, ML-based ranking
systems on average increase the relevance of the provided rankings for the di-
rect consumers of them, i.e., listers, according to the nDCG score. Splitting
this analysis across demographic groups, we observe how certain groups do not
benefit equally from average increases in the system performance, and even may
be served worse than the baseline in some cases. Focusing on the other side of
the market, i.e., seekers, we observe how incorporating the ML-based system in-
creases disparities in exposure among them, leading to a small fraction of users
receiving larger exposure, resulting in yet another example of disparate exposure
caused by a ML-based system.

Then, we analyze the requests issues by listers when they find a relevant seeker
among the recommendations. From there, we first show disparities in the Conver-
sion Rate (CR) metric, a measurement of how easy it is to get accepted by the
contacted seekers. During the assessment of the request driven by the random
system, we observed small inequities between demographic groups that perhaps
merit further analysis. In general, those sub-groups of the population which ben-
efit more according to the nDCG (i.e., they find more suitable seekers to contact
among the top recommendations), are also the ones with lower gains in the CR
metric (i.e., they are not accepted as much by the seekers they contact).

After that, we observe how the addition of the ranking system created un-
evenly distributed gains of performance for the CR score across demographic
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groups. That, after being analyzed per model, showing significant gains for more
sophisticated models. However, once again, minorities or already disadvantaged
groups, obtained lower performance for that metric.

On the seekers side, we observed that inequities in Click Through Rate (CTR),
a metric of interest of ranked users for the listers, were generally consistent across
demographic groups. This fact can be interpreted as a systematic failure of rec-
ommending certain groups to the listers that would really be interested on them
or, as an example of biased user preferences altering a performance metric. Most
probably, it could be due to a combination of both aspects.

After analyzing the first two layers in the system, we wanted to empirically
validate some ideas introduced by [186], where authors claimed that ranking sys-
tems optimized for the utility of the rankings to users, tend to be oblivious on their
impact to the ranked items. We assessed this in a fairness-utility analysis for both
sides of the market. First, we observed how increasing the utility lead to lower
disparities in the same metric for the listers. Nevertheless, we also observed how
higher accuracy led at the same time to slightly larger inequities for the seekers
exposure, validating the hypothesis. From this analysis, we also observed how the
random system was not following the general trend of the rest of the models, most
probably because it was not really optimized for the utility of the rankings.

Finally, we assessed whether different models related to inequalities in the
amount of the economic transactions facilitated by them (rentals). From this final
analysis, we can claim that generally there were no significant differences either
for the listers or seekers for each of the models. In other words, while the different
inequalities we have observed impact the probability that a user finds a rental, they
do not seem to change substantially the price at which rooms are rented, for the
cases in which a rental is found.

As a result of this analysis, we conclude that when analyzing such a system,
measuring average effects may be quite insufficient, and it is necessary to consider
each stage in the process, each algorithm, and each sub-group of people.
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Chapter 6

DETECTING AND MITIGATING
BIASES IN CLASSIFICATION

6.1 Introduction

6.1.1 Motivation
On a daily basis, many people are increasingly using social media platforms to
share their feelings and moods. This creates a unique opportunity to proactively
identify linguistic patterns that correlate with mental disorders [163, 174]. Early
risk prediction of depression and anorexia [129] and suicide risk-assessment [221]
are just some examples of different initiatives which have fostered the research on
the interaction between language and mental health disorders on online social
media and the application of ML to address such challenge.

However, as ML becomes more pervasive in sensitive domains, special care
should be paid to a recent issue that has drawn scholars’ attention: algorithmic
bias. The great success of ML algorithms resides in their ability to indiscrimi-
nately learn latent nuances in the input data, even if they are not explicitly in-
structed to do so. Yet, human data encodes human biases by default [44] and
therefore, these algorithms are prone to replicate and even amplify such biases in
their outcomes, leading to unfair decisions.

In the context of risk-assessment and decision-making systems, fairness is de-
fined as the “absence of any prejudice or favoritism toward an individual or a
group based on their inherent or acquired characteristics” [138]. Hence, an al-
gorithm whose decisions are skewed towards a particular group of people, often
a certain minority, is considered unfair. In recent years, several cases have been
identified as examples of inequalities created or amplified by AI-based systems.
Such systems are trained by using data extracted from society, often reflecting
several stereotypes in the form of biases. Examples of how data biases are then re-
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flected in the predictions of automated systems can be found in the case of COM-
PAS, a recidivism-prediction tool used in the U.S., where ProPublica identified
a much higher false positive rate for black people [109]; XING, a job platform
that was reported to rank less qualified male candidates higher than more quali-
fied female candidates [120]; or the case of face recognition online services found
to suffer from achieving much lower accuracy on females with darker skin color
[40]. These biases can be particularly harmful when dealing with health-related
data. As argued by Walsh et al. [210], health disparities contribute to algorith-
mic bias. For example, women have a higher prevalence of major depression and
anxiety disorders [127]. Prevailing societal notions about several groups’ suscep-
tibility to mental disorders contribute to incorporating bias in the underlying data
and model specification. Furthermore, this issue, along with other factors, might
prevent most of the risk-assessment and decision-making technological develop-
ments from ever being used in real-life setting [210].

6.1.2 Research questions

In this context, we define the following research questions that guide our experi-
mental setup, analysis and contributions:

1. RQ1: To what extent Machine Learning based predictive models exhibit
performance disparities across Anorexia Nervosa (AN) demographic groups?

2. RQ2: What are the causes of the existing biases when assessing AN on
social media using Machine Learning algorithms?

3. RQ3: How can we mitigate the aforementioned biases?

6.1.3 Contributions

In this chapter, we perform an exploratory analysis that considers algorithmic fair-
ness in characterizing eating disorders on social networks. In particular, we study
a classification problem where an automated system predicts, given a set of posts
authored by a user on a social media platform, whether such a person might suf-
fer from an eating disorder (positive prediction) or not (negative prediction). We
observe, quantify and characterize different types of inequalities that are leading
to an unfair predictive system.

Our results show how a ML model trained on the collected data exhibits rele-
vant biases in the form of higher False Negative Rate (fraction of false negatives
between the number of positives, FNR) for females if compared to the perfor-
mance obtained by male users. In the context of AN diagnosing on online forums,
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False Negatives (FN) require special consideration, as they might cause the pro-
fessionals to not detect such cases, which could lead afterwards to an omission of
treatment.

Although the dataset considered in our experiments contained a higher pro-
portion of female examples, the model was not able to accurately separate the
positive from the negative examples equally well for both genders. In particular,
the overall performance (accuracy) obtained for males was significantly higher
( 10%). This is opposed to the fact that male cases tend to be more difficult to
diagnose in practice [75].

Given that the set of characteristics contained in the dataset were mostly based
on linguistic features, the root cause of this effect might rely on the fact that body
dissatisfaction tends to be higher in women than in men [97]. Thus, it is expected
for women to be more open and talkative about diets and food-related conversa-
tions, regardless of the fact that they suffer an eating disorder or not. However,
men usually do not talk about these concepts. This causes that both positive and
negative examples contain similar distributions for certain features in the female
case, whereas those distributions are strictly different for the male case.

To the best of our knowledge, this is the first work that applies algorithmic fair-
ness in detecting eating disorders on social networks. This contribution focuses
on how inequalities can be easily created and/or amplified by predictive systems
in the domain of eating disorders. Additionally, we use state-of-the-art techniques
to mitigate detected biases, showing that finding a solution that removes all exist-
ing biases becomes a very arduous task. We conclude that the preference for one
solution over the other might depend on the concrete application system.

6.1.4 Chapter structure

The remainder of this chapter is structured as follows: Section 6.2 reviews pre-
vious works related to characterization of mental disorders on social media and
Algorithmic Fairness; Section 6.3 describes the proposed methods for bias detec-
tion, characterization and mitigation; on Section 6.4 we discuss the main results
found, while Section 6.5 closes the chapter with additional discussion pointing the
limitations and ethical concerns of this research.
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6.2 Related work

6.2.1 Characterization and assessment of mental disorders on
social media

Traditionally, mental health practitioners have collected and integrated informa-
tion from various instruments to characterize the mental state of individuals [196].
These include direct observation, focused questions on the current symptoms and
formalized psychological tests. Such instruments have been used to assess sev-
eral mental-related variables, such as the appearance, mood and attitudes of the
subjects to determine the presence of any irregularity. The proliferation of on-
line social media platforms is changing the dynamics in which mental health state
assessment is performed (Skaik, 2020, Chancellor, 2020, [169]). Individuals are
using these platforms on a daily basis to share their thoughts as well as to disclose
their feelings and moods (Prieto, 2014, Coppersmith, 2014). These platforms have
become promising means to detect different mental health disorders since the lan-
guage used as well as the emotions expressed in the text (e.g., social media posts)
and shared with followers or friends on a daily basis may pinpoint feelings like
worthlessness, guilt, or helplessness. This can provide a characterization of symp-
toms of psychological disorders, such as Anorexia Nervosa. In this regard, [163]
characterizes different stages of Anorexia Nervosa on Spanish-speaking Twitter
users by combining the analysis of text, images and social interactions.

6.2.2 Algorithmic fairness for detecting mental health status
Reduced research work has been conducted regarding the intersection between
algorithmic fairness and the automated detection of mental disorders. Although,
this has an increasing interest especially for social media platforms or in scenarios
where users give their consent to be tracked on social media for health monitoring
(schools or medical centers). In particular, (Chancellor et al., 2019) highlight the
existence of methodological concerns of data collection and bias related to the
application of ML methods to infer mental health status. In general, discussions
of consent, validity, underlying bias from data collection techniques, or ML model
selection is very limited. Moreover, the outcome of such algorithms, perpetuating
unintended biases might lead to negative and discriminatory repercussions.

In this respect, (Straw and Callison-Burch, 2020) conducted a literature re-
view over fifty-two articles that address the use of Natural Language Processing
(NLP) in mental health across multiple disciplinary databases, and explore each
stage of AI models’ development to analyze which and how biases arise. The
literature review found that no studies stratified the outputs of their NLP mod-
els by demographic features. Moreover, they performed an analysis of biases in
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word embeddings that relate to mental health by evaluating GloVe and Word2Vec
pretrained embeddings. They explore the relationships within word embeddings
using analogy completion approaches to compare demographic labels and psychi-
atric terms (e.g. man is to depression, as woman is to "perinatal depression").

More recently, (Aguirre et al., 2021) explored the susceptibility to gender and
racial biases of different computational methods for the automatic assessment of
depression. In particular, they focused on the detection and mitigation of such de-
mographic biases analyzing two widely-used datasets for the study of depression
on social media: CLPsych (Coppersmith et al., 2015) and MULTITASK (Benton
et al., 2017). They considered four demographic groups and two genders. Out-
comes from their study revealed that existing datasets are not demographically
representative and, without accounting for this, depression classifiers performed
worse on people of color, specifically female in CLPysch and male in MULTI-
TASK. Both groups are underrepresented in the datasets. Finally, they provided a
series of recommendations on how to avoid such biases in future research using
these datasets.

Prior work differs from ours as we present the analysis and characterization
of gender related biases regarding a particular use case, which consists in a task
addressed to the detection of Anorexia Nervosa on Twitter. For our predictive
models, we take into account several features and propose approaches to address
biases by applying fairness assessment approaches.

6.2.3 Bias mitigation in classification

In this section, we review the state-of-the-art bias mitigation algorithms for clas-
sification problems.

Existing methods to mitigate biases in ML models fall under three categories:
(i) Pre-processing. Pre-processing methods modify the input data with the ob-
jective of reducing input data biases that might lead to performance disparities.
(ii) In-processing. In-processing techniques modify the learning algorithm to in-
corporate fairness constraints. (iii) Post-processing. Post-processing approaches
treat the ML model as a black-box and modify its outputs to achieve fairer out-
comes.

In particular, in next chapter, we use as baseline a Logistic Regression model
(LogReg) model, identified as the model with a better trade-off between balanced
accuracy and FNR ratio. Such a baseline is compared with the effects of applying
two pre-processing algorithms named Optimized Pre-processing [45] with repair
level 0.85 and Reweighting [110]. Additionally, we tested a post-processing al-
gorithm named Calibrated Equalized Odds [156] optimizing for generalized false
negative rates.
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6.2.4 Training calibrated classifiers

Previous work [156] analyzed the trade-off between minimizing error disparities
across population groups while maintaining calibrated probability estimates. Ob-
taining calibrated probability estimates is considered crucial for empirical risk
analysis tools [187].

Models calibration is often considered in algorithmic fairness analysis, as in
the case that there is a disparity of calibration between population groups, a de-
cision maker may be inclined to take the predictions less seriously for the group
that lacks calibration [114].

When the classifier predictions are properly calibrated, its output can be di-
rectly used as a probability. It requires that for each classifier output range, the
proportion of samples that actually have the true label is equivalent to the output
value. For example, if a given (binary) classifier is properly calibrated, a predic-
tion score of 0.2 for a given sample would require it to have a 20% chance of
belonging to the positive class, 0.5 would require a 50% chance of belonging to
the positive class and so forth.

In the task of detecting Anorexia Nervosa from online traces, certain use cases
such as giving treatment priority to higher risk cases, would also require the use of
a continuous output, i.e. predicting values in the range [0,1] so that those predicted
with higher values can be used to prioritize treatment for those cases that are in a
higher risk or have higher probability of suffering the disorder.

Additionally, comparing calibration across demographic groups can be used
to adapt the decision threshold individually for each demographic group, so con-
ditional probabilities of obtaining false negatives are equalized between them.

To obtain calibrated classifiers, we compare the performance of state-of-the-
art calibrators: Isotonic and Sigmoid calibrators, which can be understood as re-
gressors that map input values to new projected values in the same range [0,1]
forming a new distribution where the obtained scores are equivalent to the actual
chances of being a positive sample.

To train each calibrator, we use 5-fold cross-validation to ensure correct gener-
alization of the obtained results. For each data split, the predictions of the trained
model are used to fit an instance of each calibrator. To obtain calibrated predic-
tions, model predictions are then transformed into the average of the 5 trained
calibrators.
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6.3 Methods

6.3.1 Dataset

We used the dataset collected by [163] for characterizing Anorexia Nervosa on
Social Media, in particular, on Twitter. This dataset consists of publications cor-
responding to a one-year period between 2017-12-21 and 2018-12-21. The meta-
data elements and texts extracted passed through a strict transformation process
in order to build and store vector representations of the features of interest at user
level, guaranteeing the analysis of fully anonymized data.

Each element in the dataset (user) is independently annotated by a group of
psychologists, psychiatrists, and therapists within one of the following classes:
1) Anorexia Nervosa (positive) - 177 users that manifest signs and symptoms of
Anorexia Nervosa on their texts or if they explicitly state that they have been di-
agnosed with Anorexia Nervosa and/or are in treatment. This includes users at the
precontemplation, contemplation and treatment stages according to the Transthe-
oretical Model [159]; 2) control - 326 users that do not make use of terms related
to Anorexia Nervosa or users that use terms related to the disorder, but they do not
manifest signs of anorexia. Table 6.1 reports the number of positive and control
cases, split by gender. We consider just male and female, discarding those users
corresponding to organizations that were also included in the original dataset.

Positive Control
No. samples 177 326
Female 127 157
Male 50 169

Table 6.1: Base rates for each class and gender in the dataset.

The dataset includes more than a hundred features built and inferred based on
the text, images and metadata of the users’ tweets. We discarded those extracted
from images, as they were not present in all the users, as most of them tweeted
text with no images attached. The detailed description of all the features included
in the dataset can be read in the original paper [163], and they can be clustered in
the following groups (see Table 6.2).

In the next sections, we describe the methodology used to detect and quantify
biases on models trained on the Anorexia Nervosa dataset towards answering the
RQs posed in the introduction section.
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Types of features Description

Content shared and interests

Linguistic dimensions
Affective processes and emotions
Personal concerns
Risk factors vocabulary
Anorexia related vocabulary
Topics of interest
Proportion of Anorexia Nervosa related tweets

Social network
Measures of interactions and engagement
Analysis of followers and communities detection
Analysis of interests between users and their followers

Behavioral aspects
Activity on a daily, weekly and monthly basis
Sleep period tweeting ratio

Demographics
Gender
Age

Table 6.2: Types of features included in the selected dataset.

6.3.2 Bias detection
In order to answer RQ1, we evaluate two scenarios: (a) the first one corresponds
to the most typical case, when a unique model is trained for both genders and
used to make predictions for all samples; (b) in the second scenario we train an
individual model for each gender. We use this approach to evaluate whether this
might have a significant impact on the final results.

To demonstrate that the observed behavior does not specifically depend on
the usage of a certain category of classifiers, we compare a variety of models
commonly used for the task [169] : (i) Logistic Regression, (ii) Random Forest,
(iii) Support Vector Machines with different kernels, (iv) Multilayer Perceptron
and (v) Ada Boost.

For testing the models, we partitioned the dataset between training and test
using a cross-validation strategy based on 5-folds. For each of these data par-
titions, we trained a classifier using the training set and evaluated the observed
performance for the test set.

The proposed methodology allows generalizing results on multiple data parti-
tions and different models.

Biases are measured in terms of balanced accuracy (bAcc) and false negative
rate ratios (FNR) between samples of different gender. FNR is related to the crite-
ria of sufficiency [19] and requires a fair model to have similar false negative rates
across demographic groups. The balanced accuracy metric is generally prefer-
able in scenarios where data is not well-balanced, as it is the case in the collected
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dataset:

• bAcc normalizes true positive rate (TPR), also known as recall, and true
negative rate predictions (TNR) by the number of positive and negative sam-
ples, respectively, and divides their sum by two. True positive rate (TPR)
and True negative rate (TNR) measure respectively the fraction of correctly
detected positives and negatives between the total number of them:

bAcc =
TPR + TNR

2

• FNR quantifies the fraction of false negatives (FN) between the number of
positives (P):

FNR =
FN

P
=

FN

FN + TP

Finally, we measure the following ratios (values closer to one indicate less
biased predictions):

• bAccratio =
bAccfemale

bAccmale

• FNRratio =
FNRfemale

FNRmale

6.3.3 Bias characterization
With the purpose of investigating the causes of the algorithmic bias when as-
sessing AN on social media, we studied the features considered as input for the
predictive models to identify which of those variables are more predictive for each
gender (see Table 6.2).

As described by [163], the collected dataset was annotated by up to 5 human
experts and the final label was decided based on the agreement of at least 3 anno-
tators. For this analysis, the assigned labels were simplified to two classes: control
and anorexia, with doubtful cases assigned to control.

Following the procedure described by Shing H.C et al. [183] we evaluated the
performance of the individual human labelers with respect to the obtained ground
truth in terms of balanced accuracy (bAcc) and false negative rate (FNR) ratios
between female and male samples.

A different perspective on Bias characterization for this problem can be found
in the PhD thesis on mental health and social media [164] section 5.5.3.

6.3.4 Bias Mitigation
In this section, we assess the effect of state-of-the-art bias mitigation algorithms
applied to the use case studied in this work in order to answer RQ2.
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Training fair classifiers

Existing methods to mitigate biases in ML models fall under three categories: (i)
Pre-processing. Pre-processing methods modify the input data with the objective
of reducing input data biases that might lead to performance disparities. (ii) In-
processing. In-processing techniques modify the learning algorithm to incorporate
fairness constraints. (iii) Post-processing. Post-processing approaches treat the
ML model as a black-box and modify its outputs to achieve fairer outcomes.

In particular, we use as baseline a Logistic Regression model, identified as the
model with a better trade-off between balanced accuracy and FNR ratio. Such
a baseline is compared with the effects of applying two pre-processing algo-
rithms named Optimized Pre-processing [45] with repair level 0.85 and Reweight-
ing [110]. Additionally, we tested a post-processing algorithm named Calibrated
Equalized Odds [156] optimizing for generalized false negative rates.

Training calibrated classifiers

Previous work [156] analyzed the trade-off between minimizing error disparities
across population groups while maintaining calibrated probability estimates. Ob-
taining calibrated probability estimates is considered crucial for empirical risk
analysis tools [187].

Models calibration is often considered in algorithmic fairness analysis, as in
the case that there is a disparity of calibration between population groups, a de-
cision maker may be inclined to take the predictions less seriously for the group
that lacks calibration [114].

When the classifier predictions are properly calibrated, its output can be di-
rectly used as a probability. It requires that for each classifier output range, the
proportion of samples that actually have the true label is equivalent to the output
value. For example, if a given (binary) classifier is properly calibrated, a predic-
tion score of 0.2 for a given sample would require it to have a 20% chance of
belonging to the positive class, 0.5 would require a 50% chance of belonging to
the positive class and so forth.

In the task of detecting Anorexia Nervosa from online traces, certain use cases
such as giving treatment priority to higher risk cases, would also require the use of
a continuous output, i.e. predicting values in the range [0,1] so that those predicted
with higher values can be used to prioritize treatment for those cases that are in a
higher risk or have higher probability of suffering the disorder.

Additionally, comparing calibration across demographic groups can be used
to adapt the decision threshold individually for each demographic group, so con-
ditional probabilities of obtaining false negatives are equalized between them.

To obtain calibrated classifiers, we compare the performance of state-of-the-
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art calibrators1: Isotonic and Sigmoid calibrators, which can be understood as
regressors that map input values to new projected values in the same range [0,1]
forming a new distribution where the obtained scores are equivalent to the actual
chances of being a positive sample.

6.4 Results

In this section, we aim to answer RQ1, RQ2 and RQ3 following the methodology
described in the previous section.

6.4.1 Bias Detection

In order to know if ML-based predictive models exhibit performance disparities
across AN demographic groups (RQ1), we train and evaluate different estimators
for assessing the risk of AN on male and female samples. Performance is mea-
sured using FNR and bAcc ratios. As stated in previous sections, we compare two
different scenarios: (a) a single model trained for both genders; (b) an individual
model trained for each gender separately, data is averaged with the same weight
across genders.

Figure 6.1: (best seen in color) average bAcc and FNR compared to bAcc ratio
and FNR ratio across genders on the trained models. Figures on the left show
scenario (a) -unique model- and figures on the right show scenario (b) -one model
per gender-.

1We used the implementation available in Scikit-learn: https://scikit-learn.org/
stable/modules/calibration.html
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When analyzing scenario (a), the results on performance disparities show that
trained models obtain a good level of balanced accuracy (all of them greater than
87

Nevertheless, we observe important performance differences when decompos-
ing such values by gender, yielding in the worst case (MLP classifier, one model
per gender) an accuracy of 0.913 for male samples and 0.844 for female samples
(relative difference of 8

Additionally, most of the models show around twice the false negative rates
for female samples when compared to male ones (dotted blue line in Figure 1).
Differences of performance are even more dramatic when using the second sce-
nario, where an individual model is trained for each gender, incrementing the false
negative rate differences up to 500

Although applying the second scenario might imply a disparate treatment by
gender, which is protected by law in multiple countries, it was an interesting exer-
cise producing mostly counter-intuitive results. The comparison of results shown
in figure also prove that including the male samples in the training set benefits the
performance obtained by females.

Summarizing the results obtained, we were able to achieve high accuracy mod-
els in both scenarios, but the performance was always lower for female samples.
An error analysis points out that females have higher rates of false negatives,
which is extremely dangerous in this context, since a false negative could lead
to a lack of detection and therefore to a denial of treatment. Disparities of perfor-
mance are reduced when a unique model is trained for both genders. Conversely,
using a different model per gender leads to higher disparities in performance, in-
creasing even more the lack of performance for females.

In the remainder of this paper we use the Logistic Regression (LogReg) classi-
fier, using a unique model for both genders as a baseline. The choice is motivated
by the fact that such a classifier shows the best balance accuracy and false negative
rate ratios while keeping an average accuracy greater than 87

These results motivate the rest of this article. As observed female samples ob-
tain not only lower performance, but also when the models make a misprediction,
it is almost twice more probable that it has the form of a false negative for female
samples.

6.4.2 Bias Characterization
The results obtained by Ramírez-Cifuentes [164], in this section can be summa-
rized as the selected features identified to be not equally predictive across genders.
This implies a difference of separability between male and female samples, with
the features being more predictive for males than for females. This provides one
of the answers to RQ2.
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Additionally, we analyzed the labelers’ performance for both genders by con-
sidering the final labels present in the dataset as the ground truth.

Figure 6.2: Labelers performance with respect to obtained ground truth.

As shown in Figure 6.2, the obtained results show that labelers had greater per-
formance for male samples, with higher accuracy and lower FNR for them. The
only exception between the 5 experts is Labeler 1, who showed higher accuracy
for female samples and higher FNR for male ones. Additionally, we evaluated the
Cohen’s Kappa agreement between each pair of labelers for female and male sam-
ples separately, with an average of 0.807 versus 0.841 respectively, which could
suggest that diagnosing male samples could be easier for human experts.

Interestingly, we see that most of the labelers had better performance when
detecting anorexia nervosa in online traces. However, females tend to be easier to
diagnose than males [75] during in-person consultations.

Understanding the performance of the annotators as an upper-bound of the per-
formance that an autonomous system can have for this dataset, we observed that
annotators have a certain level of bias (quantified in terms of performance differ-
ences across genders) that afterwards seems to be not mitigated if not amplified
by the addition of the ML systems.

6.5 Bias mitigation
In this section, we test state-of-the-art techniques to obtain fair classifiers. We
will use the Logistic Regression classifier, as it was the one that showed fewer
disparities in performance while keeping a high level of accuracy (Figure 6.1).

In particular, we evaluate two different use cases: The first one will be de-
scribed in section 6.5.1 and corresponds to the case where the model will be used
to predict whether individuals might have the disorder or not. We will compare
the model that has better overall accuracy and the model that obtains lower FNR
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Table 6.3: Obtained performance in terms of Accuracy and FNR across genders
for each bias mitigation technique.

Technique
Avg

Accuracy
Female

Avg
Accuracy

Male

FNR
Female

FNR
Male

F1
score

Female

F1
score
Male

Original classifier
(LogReg) 0.812 0.916 0.082 0.005 0.844 0.947

Disparate Impact Remover 0.836 0.955 0.097 0.011 0.860 0.970
Reweighting 0.799 0.932 0.089 0.010 0.833 0.956
Calibrated Equalized Odds 0.812 0.916 0.082 0.005 0.844 0.947

inequalities by gender. The best models in terms of accuracy tend to be the ones
that maximize FNR differences across genders, reducing their suitability for this
use case from the point of view of algorithmic fairness. Afterwards, we evalu-
ate a second scenario, where the predictive models will be used to sort the list
of patients to be analyzed. First, it requires the prediction to be continuous, but
additionally, for the individuals to be sorted, the predictions must also have a prob-
abilistic approach, so we know that individuals predicted with a 0.8 really have an
80% of being a true positive.

6.5.1 Training fair classifiers
Results are calculated using 4-fold cross-validation, splitting the data between
training, validation and test. Methods that require a validation set for adjusting
parameters use the validation set, and all of them are evaluated on the test set.
Results reported in Table 6 are the average of the four executions.

Table 6.3 shows the results of applying the bias mitigation algorithms, where
it can be observed first that all methods lead to better or equal FNR ratios than the
observed with the original classifier.

As can be seen in the table, the best bias mitigation results regarding FNR
are achieved with the Reweighing pre-processing algorithm with a little improve-
ment with respect to the performance observed for the Disparate Impact Remover
algorithm (see Section 6.2.4) for a brief explanation of these algorithms). How-
ever, the improvement in terms of FNR ratio is done at the cost of incrementing
the FNR for both genders. In case we aim to obtain a model that minimizes the
balanced accuracy ratio, the original model and the Calibrated Equalized Odds
post-processing, are reporting similar values with a bAcc ratio of 0.892.

Results showed that even when disparities can be mitigated with most of the
algorithms, they can’t be eliminated. Additionally, some methods failed to provide
a result that was substantially better than the obtained with the original classifier
without any transformation.
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6.5.2 Training calibrated classifiers
In this section, we analyze and compare the calibration of the different ML models
trained in our experiments and apply state-of-the-art calibrators to obtain properly
calibrated models after post-processing their outputs.

Figure 6.3: Calibration curves obtained for original model and calibrators

The calibration results depicted in Figure 6.3 show that the Isotonic calibrator
obtains a calibration curve that is generally closer to the objective function (dotted
line) for most of the thresholds.

The decision of which option is more suitable for production depends on the
concrete application. Selecting the threshold that is more suitable for a given use
case is generally done based on economic reasons, as occurs in many other public
policy problems [77].

As an example of a calibration problem, suppose a scenario where all the
samples predicted with a value greater than a certain threshold would be treated in
a medical consultation by a practitioner. Consider a population of 100 individuals,
a total budget of 1000C and a cost of 33C for each treated individual. This would
allow up to 30 patients (30% of the population) to be considered for diagnosis in
a medical consultation. In such a case, we would use the threshold 0.7, so only
individuals with a prediction score greater than 0.7 are considered.

Using a perfectly calibrated model, we would expect 21 true positives (70%
of the 30 individuals considered for diagnosis). In this case, given that the cal-
ibration curves depicted in Figure 7 show very similar calibration values for all
the calibrators at such a threshold, there is not a strong preference for using one
among the others.
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Nevertheless, if we consider the same scenario but with a total budget of
1650C, we would be able to check up to 50% of the population. Therefore, we
will use the 0.5 threshold, where the Logistic Regression classifier with the Iso-
tonic calibrator shows a clearly better performance making it to be the preferred
choice. Using such a classifier, we would be able to detect up to 25 true positives
between the 50 individuals selected for medical consultation.

From these results we conclude that even when the LogReg with the Isotonic
calibrator is better calibrated better in general, certain use cases would make other
options more or equally preferable to the LogReg with Isotonic calibrator.

6.6 Discusion
Lastly, social media has been offering a new space for mental health assessment.
The explosive use of such platforms, especially by young people, raised questions
about the potential negative impact of these applications on the mental health of
the most vulnerable ones. Particularly, users with Anorexia Nervosa (AN) repre-
sent a very tight online community that have even created their own vocabulary to
be identified among themselves with the goal of exchanging very unhealthy tips.
In this regard, new research has been developed on automatically detecting users
at risk by analyzing their online activity using artificial intelligence. These stud-
ies usually work on datasets containing data from, mostly, female users. Thus, we
would expect that these algorithms would perform better when classifying females
than males, as they are provided with more female instances.

However, we have attested that ML models exhibit gender bias on assessing
AN, as they produce higher False Negative Rate for females (RQ1). This might
cause wrong and late diagnosis that can be extremely harmful.

We later experimented on characterizing this bias (RQ2), by analyzing the
most relevant features selected by our models for assessing female and male users,
separately, and comparing these features with those selected by clinicians when
classifying risk of AN just based on the writings of the users. We could attest that
biological processes and suicide risk factors are the key for a good precision in
classifying positive AN cases in males, and age, emotions and personal concerns
are more relevant for females, probably because they tend to express more they
feelings on their posts. We could also confirm that automated models are not
capable of identifying suicide risk factors that are described implicitly in text.

Finally, we proposed several techniques for bias mitigation (RQ3) and we
could see that even when disparities can be mitigated with the new proposed al-
gorithms, they can’t be eliminated.

In conclusion, online assessment of mental health issues using automated
methods needs more attention. Most of the state-of-the-art works in this regard
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just measure global precision metrics without making any effort on detecting gen-
der bias. Fairness should be considered when deploying automated systems that
could affect the diagnosis of people at risk.

6.6.1 Limitations
It is important to note the methodological limitations present in the study of algo-
rithmic fairness on social media conducted in this work.

First, we acknowledge that the findings and conclusions obtained are limited
to a specific eating disorder known as Anorexia Nervosa. While other eating disor-
ders, like bulimia nervosa or Eating Disorder Not Otherwise Specified (EDNOS),
might share common symptoms with Anorexia Nervosa [7], the behavior and ac-
tions that characterize the individuals suffering from any of them is quite different.
Therefore, it is expected that the manifestation through language use on social
media might be different between these disorders, and hence also are the features
which most accurately denote their presence and development. The exploration
and comparison between the language expression on social media of these disor-
ders is still an open problem [174].

Another limitation we observe with our study is related to the dataset. As
stated by [163], demographics attributes were inferred using an automatic ap-
proach. As any computational method, this procedure is not free from error.
Nonetheless, as the authors explained, the accuracy of the method was manually
tested on a subsample of the dataset. A macro average accuracy of 0.84 for all
the gender groups of all the classes and a macro average accuracy of 0.80 for all
the age groups of all the classes was achieved. For this reason, we still consider
this as a good approximation of the demographics attributes, which enables us to
study the manifestation of bias and shed light on possible solutions.

Moreover, it should be noted that even though the annotation process was
rigorously conducted by five domain experts (three psychologists and two psy-
chiatrists), it might not be completely accurate. The practitioners involved made
their judgments using only the textual content of the posts. In a real-life scenario,
a diagnosis is elaborated based on a combination of direct and indirect assess-
ment instruments, such as unstructured observation, specific questions regarding
the manifesting symptoms, and formalized psychological tests. These elements
allow practitioners to acquire a comprehensive cross-sectional characterization of
the person’s mental health condition. Despite this limitation, we consider that
given the background and practical experience of the professionals involved in
the annotation process, labeling errors would be minimal and not influence the
conclusions obtained for the whole sample of individuals analyzed in this work.

Finally, we should be aware that the conclusions drawn from the data are
limited in scope to individuals who use social media, meaning it is probably a
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younger and more technologically literate sample than the population as a whole
[146]. Moreover, our study only included users who are active on Twitter and
who choose to make their tweets publicly available. Therefore, the fairness as-
sessment considering users from other social media platforms and even of people
with Anorexia Nervosa who do not have accounts on any social platforms is out
of our reach.

6.6.2 Ethical concerns
Research involving human beings concerns sensitive topics related to the ethics of
the treatment of data and individual’s privacy [50]. The sensitive nature of mental
health research requires us to consider possible benefits of this study alongside its
potential harms.

The potential immediate benefit of this study is a better understanding of gen-
der bias in computational assessment of Anorexia Nervosa using social media
data. A potential second benefit is the mitigation of the disparities observed which
otherwise, as shown in this study, permeate into the assessment algorithms. In
particular, we ascertained the extent to which fairer classifiers can be developed
considering the trade-off with performance.

Nonetheless, we are aware of the potential harms from our work. Mental
health status are sensitive personal attributes that could be used to maliciously tar-
get individuals on publicly-facing online platforms. Hence, as researchers work-
ing with social media data we have taken the necessary precautions to protect the
privacy of individuals and their ethical rights to avoid any further psychological
distress. We have followed the guidelines of Benton et al. [23] and Ayers et al.
[13] on data use, storage, and distribution. All analysis was conducted on deiden-
tified versions of data as all identifying metadata was either redacted or obfuscated
to preserve the privacy of individuals in the dataset.
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Chapter 7

UNCOVERING BIASES IN
USER-MACHINE INTERACTION

7.1 Introduction

7.1.1 Motivation

Decision support systems based on artificial intelligence are increasingly being
deployed in a variety of real-world scenarios [130, 31, 143, 109]. Typically, these
deployments involve a moderate level of automation [54] in which a human is in
charge of making the final decision based on some inputs, including a Decision
Support System (DSS). Indeed, in some contexts, that a human makes the final
decision when using a decision support system might increasingly become a legal
mandate.1

The process of incorporating the input from a DSS is a complex cognitive task,
considering that in many domains machines are still far from achieving perfect
accuracy. Users have to navigate between the traps of algorithmic aversion [64]
and automation bias [54], respectively characterized by under- and over-reliance
on the DSS. Several authors have studied and tested methods to increase user trust
in machine predictions [15]; however, eliciting more trust might not be the best
way to combine human and machine intelligence. Arguably, the ideal scenario is
one in which users follow the advice of the DSS when it is correct and ignore it
when it is wrong.

We study how key characteristics of a decision support system impact the
decisions made.

To do this, we designed an online game, depicted in Figure 7.1. It consists of
a 32x32 board representing a map having green (“forest”) and brown (“desert”)

1See, e.g., Article 22 of the EU General Data Protection Regulation.
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Figure 7.1: Experiment interface. The terrain is represented by green (forest) and
brown (desert) cells. The user has drilled in the cells in black, and a recommen-
dation from the DSS (in yellow) is shown.

cells. Players have to “drill” for oil by clicking on a cell, and obtain a score equal
to the oil yield of that cell, which is revealed only after clicking, minus the “envi-
ronmental cost,” which is zero for desert cells, but non-zero for forest cells. The
hidden oil profile is independent of the terrain map, and is such that neighbor-
ing cells offer a similar reward. The goal of the participants is to maximize the
score after a series of 25 rounds (clicks) in each of three maps having different
levels of difficulty. Participants in our control group do not receive any assistance,
while those in various treatment groups are assisted by decision support systems
of varying levels of accuracy and bias.

7.1.2 Research question
Our main research question is how do the characteristics of a decision support
system impact human performance, time to completion, and reliance? We address
this research question experimentally.

7.1.3 Contributions
We release the design and implementation of a platform to study the stated re-
search question. As a limitation (discussed on §7.7.1), the platform does not sim-
ulate a high-stakes scenario. However, it allows studying common elements of
human interaction with a DSS, as it does not require prior knowledge from partic-
ipants. In this platform, researchers can vary the problem difficulty and the accu-
racy of the decision support system, and introduce bias in the recommendations
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in a manner that is visible to participants. The platform records all interactions,
generating a wealth of data including player’s performance, timing, and reliance
on the decision support system both implicitly (by observing clicks) and explicitly
(by an exit survey).

We describe a series of experiments, approved by our Ethics Review Board,
and involving over 400 participants recruited via crowdsourcing. These experi-
ments uncover what we consider mostly rational behavior. For instance, partici-
pants rely on the decision support system to an extent that is well-aligned with its
accuracy.

7.1.4 Chapter structure
This chapter is organized as follows: We overview related work in section 7.2
before describing the methodology in Section 7.3 and experimental design in Sec-
tion 7.4. Then, we review the obtained results Section 7.5 and discuss the general
findings Section 7.6. Finally, we discuss the limitations of our approach in Section
7.7.

7.2 Related work
The literature on decision support is vast; in this section, we overview research on
Decision Support Systems (DSS) that provides context for our work (subsection
7.2.1), particularly research on trust and reliance on DSS (subsection 7.2.2), and
on the influence of DSS accuracy on reliance (subsection 7.2.3).

7.2.1 Decision Support Systems (DSS)
Decision-making is an essential activity that involves facing choices, often in
the presence of uncertainty [38]. It is also a complex cognitive process that de-
pends on interpreting large amounts of information, evaluating the possible con-
sequences of the decision to be made [54]. The goals of deploying a DSS to assist
human decision-making typically include improving the quality or accuracy of
decisions, reducing subjectivity, reducing costs, and increasing the efficiency of a
decision-making process [89, 125].

An important characteristic of a DSS is its degree of autonomy with respect to
human decision makers [54]. A high level of automation, e.g., a DSS that can au-
tomatically implement its recommendations, can be useful in scenarios where the
workload is high, and the DSS can correctly make decisions in a reliable manner,
helping to reduce workload [15]. A lower level of automation, e.g., a DSS that
only recommends a choice but does not act upon it, might be less useful in some
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scenarios, but can also help human decision-makers detect failures or errors in the
DSS [195].

One of the most challenging aspects of implementing a DSS is that humans
embed values, biases, and assumptions in their decision-making without acknowl-
edging the ambiguity, incompleteness, and uncertainty that are part of this process.
Hence, there can be misalignment or complete lack of alignment between the rec-
ommendations of a DSS and what humans would choose [30, 198].

7.2.2 Trust and Reliance on Decision Support
Multiple studies from different disciplines have been carried out to understand
which factors affect human trust and reliance on a DSS. Some controlled user
studies indicate that participants tend to exhibit automation bias, i.e., a tendency
to follow the DSS even in cases in which they could have made better decisions by
ignoring it [66, 16, 193]. Other controlled user studies have uncovered algorithmic
aversion, i.e., a tendency to distrust the recommendations of a DSS, or a rapid drop
in confidence on an algorithmically-supported DSS after seeing it make a mistake,
which would not have been of the same magnitude if the decision support were
offered by a human [64].

In general, the trust that users place in an automated system is affected by
contextual, cultural, and societal factors [126]. Trust in this case is a complex
construct that depends on the interplay of the users’ disposition to the system,
the situation in which the interaction happens, and what the users can learn about
the system. Reliance, on the other hand, is more narrowly defined as compliance
with an automation’s recommendation [98]. The extent to which trust determines
reliance on a system is also subject to influences such as the complexity of the
situation, its novelty, the degree of decisional freedom of the user, and whether
s/he can compare the performance of automated and manual decisions [98].

In general, decision-makers consider the guidance of a DSS relative to the
information context in which it is provided. Hence, they may deviate from the
DSS suggestions for different reasons, including their own biases, preferences,
and deviating objectives [106, 85, 133, 189]. For instance, some user studies
suggest that experienced decision-makers in a given domain are less inclined to
follow algorithmic suggestions, and rely more on their own cognitive processes
[88, 157].

7.2.3 Effects of DSS Accuracy
While a DSS does not have to be perfectly accurate for it to be useful [3], better
decisions can be made if decision-makers can rely more on a more accurate DSS
than on a less accurate DSS. Some user studies indeed have shown that humans
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rely on machine predictions more when they are correct than when they are incor-
rect [121]. However, in other user studies, participants have consistently followed
incorrect recommendations even for tasks they perform well [193]; or have failed
to correctly evaluate the accuracy of the DSS and their own accuracy, and hence
have not been able to adapt their reliance on the DSS to its performance [87, 86].
In general, perceiving the accuracy of a DSS is easier when DSS errors are con-
sistent and deterministic, and when there is a simple boundary separating cases in
which the DSS is correct from cases in which the DSS is incorrect [17].

Inferences about the accuracy of a DSS might be influenced not only by the
correctness of the recommendations, in cases where humans can to some extent di-
rectly observe correctness, but also by the information provided by the DSS [121].
For instance, simply stating that a DSS is accurate can increase reliance on it, up to
a point; however, the effect of these statements is weaker than direct observation of
correct recommendations by users [213]. Similarly, displaying a confidence score
accompanying each recommendation or prediction of a DSS has been shown to
increase willingness to rely on these recommendations, when the confidence score
is high [220]; however, in other user studies even when informing users that the
DSS has low confidence in a recommendation, users have followed it [193].

We build upon previous work by studying a common interaction sequence with
a DSS: (1) the environment provides an input, (2) a DSS recommends an action,
(3) the human makes a decision, and (4) the environment returns a reward [16].
We provide a simple yet expressive scenario for which no prior experience from
the participants is required. With few exceptions (e.g., [193]) studies on the inter-
action of AI with human decision-making do not experiment with task difficulty,
and in contrast with most previous work (e.g., [86, 128, 16, 66, 121, 213]), the
systems we consider are less accurate than humans acting alone. To the best of
our knowledge, ours is the first study that considers different levels of bias in the
decision support.

7.3 Methodology

In this section, we describe the details of our methodology. We first present an
overview of our methodology (Section 7.4) and the platform we designed to per-
form our experiments (Section 7.4.1); then we describe the independent and de-
pendent variables we take into consideration in our experiments (Section 7.4.2).
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7.4 Overview

Our methodology is experimental and based on a simple yet expressive game,
depicted in Figure 7.1. The game, inspired by “Wildcat Wells” [136] and de-
scribed in Section 7.4.1, has several characteristics that make it appropriate for
this research, including that (i) it is simple, (ii) does not require training or prior
experience, (iii) uses a random game generator, (iv) provides fine-grained control
over game difficulty, and (v) naturally lends itself to decision support.

We first perform a simple experiment without any decision support system, in
which we randomly generate a set of maps and select three maps that (according
to the scores users obtain) are labeled respectively as easy, medium, and hard.
Then, we experiment with these three maps by providing machine assistance in the
form of a recommendation on where to click next, varying parameters such as the
accuracy of the decision support or the amount of observable bias it might have.
We also include an exit survey in which we ask questions related to algorithmic
reliance.

Participants are recruited through a crowdsourcing platform specialized in re-
search2 and paid above the platform-recommended fee of 7.5 GBP per hour of
work.

7.4.1 Platform

This section describes the platform we designed and implemented to conduct ex-
periments.3

User interface. The interface is a web application composed of five screens:
(i) informed consent, (ii) demographic questions, (iii) tutorial, (iv) game, and
(v) survey. The informed consent form explains the purpose, duration, risks and
benefits of the experiment, and asks for explicit consent to participate. Then,
users are asked optional socio-demographic questions: (i) gender including male,
female, and other; (ii) age bracket in five years increments; (iii) country of res-
idence; (iv) level of education; and (v) professional background. Then, a short
tutorial is shown to explain the gameplay.

The core portion of the experiment is the game, which consists of three maps
shown in random ordering. Each of the three maps has a different level of diffi-
culty: “easy”, “medium”, or “hard”. These maps were selected from a collection
of candidate maps generated using Perlin-noise [155] random generators for the
terrain and oil profile. The selection was performed through a preliminary exper-

2Prolific (https://prolific.co/)
3All the code of the experimental platform will be released as free/open-source software with

the camera-ready version of this paper.
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iment in which participants were asked to play the game without any assistance,
as we explain in Section 7.5.

In each 32x32 map, the game proceeds in 25 rounds, i.e., allowing the user to
click on 25 of the 1,024 cells. The total score of a user is income minus costs. The
income is the combined “oil” yield of the 25 selected cells, which remains hidden
until the cell is clicked. The cost is a fixed “environmental cost” multiplied by the
number of “forest” cells that are drilled; “desert” cells have zero cost.

During the game, the platform records the time required to complete the tu-
torial and each game, as well as a timestamped record of all user interactions,
including the recommendations that are generated and the cells that are clicked.

Decision support system.

To assist users when making the decision on where to click, we provide a Machine
Learning (ML) based Decision Support System. The DSS is trained by perform-
ing a number of random “test drills” to try to reconstruct the hidden oil profile.
The DSS uses an ML model based on a Lasso model fit with Least Angle Regres-
sion (LARS) [68]; it corresponds to a Linear Model trained with an L1 prior as
regularizer. Two dimensions of the DSS that we control during the experiment are
accuracy and bias.

Accuracy. We use a setting where three versions of the DSS are generated with
respectively high, medium, and low accuracy. The high accuracy DSS is based on
an ML model trained with 20 randomly selected points, and recommends a ran-
domly chosen cell among those predicted to have a revenue in the top 20%. The
medium and low accuracy DSS simply generate a high accuracy recommenda-
tion and add to it circular two-dimensional Gaussian noise with µ = 0 and either
σ2 = 3 (small variance) or σ2 = 20 (large variance). The units for σ are cells; re-
member each side of the map measures 32 cells. The medium accuracy DSS adds
the small variance noise with probability 80% and the large variance noise with
probability 20%. The low accuracy DSS adds the small variance noise with prob-
ability 20% and the large variance noise with probability 80%. These parameters
are set experimentally through preliminary tests to induce a situation in which the
performance of the model is not immediately obvious. Nevertheless, participants
react to the accuracy of the DSS, as we describe in Section 7.6.

Bias. We experiment with two versions of the DSS, one providing biased
predictions, and another one providing unbiased ones. To create the biased pre-
dictions in a manner that was visible by participants, we train the biased DSS to
optimize only for income, i.e., ignoring the “environmental cost.” We commu-
nicate bias to users, when present, by stating that the recommendation takes into
account only the oil yield, but disregards the costs. In the unbiased scenario, the
DSS is trained to optimize income minus cost. In the low-bias scenario, the DSS
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ignores (does not consider it during the learning phase) an environmental cost of
20% of the maximum oil yield. In the high-bias scenario, the DSS ignores a cost
that is 40% of the maximum oil yield.

A sequence of recommendations is pre-computed so that users get similar rec-
ommendations during their games. The only difference they might experience is
that recommendations do not suggest cells that have already been clicked.

7.4.2 Experiment variables
In this section, we describe the set of independent and dependent variables that
we identified for our experiment. The first type of variables are controlled and
changed during our experimentation in order to observe their effect on the de-
pendent variables to be measured (e.g., the user’s performance). In general, any
change in the independent variables may cause a change in the dependent vari-
ables.

Independent Variables. As independent variables we take into consideration
three levels of map difficulty (easy, medium, or hard), and conditions with and
without decision support. When decision support is present, we also consider its
accuracy (low, medium, or high) and bias (absent, low, or high).

Dependent Variables. The key dependent variable is each participant’s score,
which is computed by adding the income minus cost across the three maps. Addi-
tionally, we measure the time to complete the three maps, and we ask participants
which of the three maps they perceive as the most difficult.

We measure reliance in two ways: implicit and explicit. Implicitly, we mea-
sure the distance between the selected cell and the provided recommendation for
each play; we interpret a short distance as more reliance. Explicitly, we use a
technology acceptance survey proposed by Hoffman et al. [99].

Technology Acceptance Survey Questions
The technology acceptance survey [99] contains the following questions:

1. I am confident in the algorithm (DSS). I feel it works well.

2. The outputs of the algorithm are very predictable.

3. The tool is very reliable. I can count on it to be correct all the time.

4. I feel safe that when I rely on the algorithm I will get the right answers.

5. The algorithm is efficient in that it works very quickly.

6. I am wary (suspicious/distrustful) of the algorithm.

7. The app can perform the task better than a novice human user.
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8. I like using the system for decision making.

This survey has 8 questions that are answered on a Likert scale (1-5). The ques-
tions, which can be found in 7.4.2, address the confidence, trust, predictability,
reliability, and safety of the DSS. A score close to the maximum (40 points) indi-
cates a high level of acceptance of the DSS, while a score close to the minimum
(0 points) indicates low acceptance.

7.5 Experimental Design
In this section we first describe the preliminary experiment used to select the three
maps with different difficulty levels (Section 7.5); then, we provide the details on
the setting of our main experiments (Section 7.5.1).

Map Selection Experiment

We used a crowdsourcing-based experiment to select three maps with different
levels of difficulty. In particular, for this experiment, we generated 10 candidate
maps composed of a terrain profile plus an oil yield profile. All maps were gener-
ated with equal parameters for the Perlin-noise generators [155]. In particular, we
used the following parameters for the generator of each of the profiles: The terrain
profile generator uses octaves= 9, persistence= 0.5 and lacunarity= 20, where
as the oil yield generator was parametrized with: octaves= 1, persistence= 1 and
lacunarity= 1. This selection of parameters yields higher surface roughness for
the terrain profiles and less surface roughness for the oil profiles.4

A total of 120 crowdsourcing workers, 15 per map, participated in this phase.
While examining the gameplay traces (score per round), we noticed in some maps
a high percentage of users that started with a high score. We called this class of
participants “luckers” and used the proportion of these to decide which map to
select; maps with a higher proportion of “luckers” correspond to overly simple
maps.

We first selected the two maps with a lower percentage of “luckers”. The map
with the lowest average score was considered ‘hard” and the other “medium” in
terms of difficulty. Among the rest of the maps, we selected an “easy” map at
random among the ones in which users had the highest scores; this map has a
single global optimum in the oil yield profile, and this optimum is located in a
deserted area, which means users do not need to consider costs when “drilling”.
Figure 7.2 depicts the terrain and oil yield of the three selected maps.

4Examples of maps generated with different ranges of parameters for the Perlin-noise generator
will be available in our code release with the camera-ready version of this paper.
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Figure 7.2: Selected easy, medium, and hard maps, displaying terrain (top) and
oil yield distribution (bottom). The terrain is visible to participants; green cells
represent forest, and yellow cells represent desert. The oil yield is hidden; darker
shades indicate higher yield.

The distribution of scores that we observed was aligned with map difficulty,
as we show in Figure 7.3 (Section 7.6.1). User perceptions of difficulty were also
aligned with these choices, as in the exit survey when asked which one they con-
sidered to be the easiest map, the “easy” map was selected by 59% of participants,
the “medium” by 23% of them, and the “hard” by the remaining 18%.

7.5.1 Main Experiments

Control group. The control group received no machine assistance. Users played
the three maps in random order. In total, we gathered data from 27 control group
participants, testing at least three times each of the six possible map orderings.

Treatment groups. All the treatment groups received help from a DSS. Here, we
consider conditions combining a level of accuracy of the DSS (high, medium, or
low) as described in Section 7.4.1, with the presence or absence of bias and the
amount of potential bias, as described in Table 7.1. This produced 36 (6 possible
map orderings × 6 possible orderings of the DSS by levels of accuracy) possible
experimental units; each one was completed by at least three different participants.
In total, 435 participants played 1,305 games. Unique participants were recruited
for each experiment separately.
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Environmental cost Biased DSS Unbiased DSS

20 (low cost) LB LU
40 (high cost) HB HU

Table 7.1: Experimental conditions, with “L” representing low cost of drilling
a forest cell, and “H” representing high cost. LB and HB correspond to cost-
unaware decision support, which yields biased suggestions. LU and HU corre-
spond to cost-aware decision support.

7.6 Results

In this section, we analyze under different experimental conditions the obtained
score (Section 7.6.1), the time to complete the task (Section 7.6.2), and the re-
liance of participants on the DSS (Section 7.6.2).

7.6.1 Score

In this section, we observe how the score obtained by participants changes under
various conditions.

Map Difficulty and Decision Support.

We compare the score obtained by participants with machine assistance with re-
spect to the control group, to understand whether the presence of a DSS improves
performance or not.

Figure 7.3 shows the score distribution in each of the three maps, with and
without machine assistance. In this and the following figures, scores are presented
per play (click), and the maximum score is 100, which is the maximum oil yield.
Median scores per play obtained using the DSS in the easy, medium, and hard
maps are respectively 88, 71, and 62 points. Without using the DSS, these scores
are respectively 80, 66, and 61 points. Using a t-test we observe that the increase
in score due to machine assistance is statistically significant at p < 0.0001 for the
easy and medium map, and at p < 0.05 for the hard map.

Decision Support Quality and Bias.

We evaluate the performance obtained with each level of accuracy and condition
of bias of the DSS, to understand the impact that these model characteristics might
have on the obtained score.
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Figure 7.3: Distribution of scores in the three maps (easy, medium, hard), with-
out machine assistance (left) and with machine assistance (right). In statistical
significance tests, “ns” stands for no significance, and asterisks significance at: *
(p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001).

Figure 7.4 compares the distribution of scores that the DSS systems would ob-
tain on their own (remember the DSS recommendations are randomized), against
the scores obtained by participants with the help of the DSS. From the figure, it is
evident that the accuracy of the decision support system impacts the score, with
more accurate systems inducing a better score. Median scores per play obtained
by participants across all three maps using the DSS are 70, 75, and 77 points us-
ing the low, medium, and high accuracy DSS respectively. These scores are higher
than what this DSS would obtain on its own: 33, 48, and 74 points respectively.
Differences are statistically significant at p < 0.0001 for the low and medium
accuracy case, and at p < 0.001 for the high accuracy case.

Furthermore, participants on their own outperform the DSS in every map, as
we mentioned they obtain 80, 66, and 61 points respectively for the easy, medium,
and hard maps; in contrast, the median scores obtained by even the high-accuracy
DSS are 69, 65, and 60 points respectively (figure omitted for brevity). The me-
dian scores obtained by the medium-accuracy DSS and low-accuracy DSS are
even lower.

Next, we consider differences in performance due to bias. We introduced a
bias that is visible to participants by providing a biased DSS that considers only
the reward but not the cost. In contrast, the unbiased DSS considers the costs. We
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Figure 7.4: Score distribution by DSS quality. We compare the score obtained by
human participants with machine assistance and the score that the machine would
obtain.

considered two conditions of high terrain cost and low terrain cost (see Table 7.1).
Figure 7.5 shows the score distributions under the four studied conditions.

These results suggest there are some variations in score distributions, but there
is no consistent increase or decrease in the median score. Under the low-cost
condition, the unbiased DSS leads to an average score per play of 75 points, while
the biased DSS leads to a score of 74 points. Under the high-cost condition,
the unbiased DSS leads to a median score of 74 points, while the biased DSS
to 71 points. The difference is statistically significant in the low cost condition
(p < 0.0001), but not in the high cost condition (p > 0.05).

Figure 7.5: Score distribution using a biased DSS or an unbiased one, for the low
(LB vs LU) and high cost (HB vs HU) conditions.
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In Section 7.6.1 we perform an analysis per map and per cost condition, ob-
serving that the unbiased DSS leads to higher scores in almost all cases, with the
exception of the medium-difficulty map in the high-condition cost.

Score distribution by bias condition and environment cost
We compare here the biased and unbiased DSS per map and under different

cost conditions: high cost (HB vs HC, Figure 7.7) and low cost (LB vs LC, Fig-
ure 7.6).

Figure 7.6: Score comparison of biased (LB) and unbiased (LU) DSS under a low
cost condition.

Figure 7.7: Score comparison of biased (HB) and unbiased (HU) DSS under a
high cost condition.

Probability of Bad Plays.

We now examine the extent to which the DSS might prevent users from clicking
on low-scoring cells, to understand whether the DSS,under various experimental
conditions, helps the user avoid these clicks.

The distributions shown in Figure 7.3 suggest that the increase in performance
due to the DSS is, at least in part, due to a decrease in the probability of obtaining
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a low score. To study this hypothesis, we define a “bad play” as a click on a
cell with a score lower than the median in a map. Figure 7.8 shows that the DSS
reduces the probability of bad plays, and that the reduction is in general larger
when the DSS is more accurate, particularly in the medium and hard maps.

Figure 7.8: Probability of “bad plays” (below median score) under different DSS
accuracy.

Figure 7.9 show that unbiased DSS (LU and HU conditions) reduce more the
chances of a bad play than the biased DSS (LB and HB).

Figure 7.9: Probability of “bad plays” (below median score) under different con-
ditions of DSS bias. HB and HU are biased and unbiased DSS, respectively, in
the high cost condition. LB and LU correspond to the low cost condition.

Map Ordering and Learning Effects.

We study how the score per click obtained by participants changes as they play
the game, and we observe it increases in general, which we interpret as a learning
effect. We do this first across maps/games and then within a map/game.
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The experiments are designed so that players play three games in a row, with
the three maps shown in random order. Players, in general, improve their perfor-
mance as they gain experience. In all maps, the scores participants obtain when the
map is in the third position are higher than the scores they obtain when the map is
in the first position (figure omitted for brevity). On average, in maps played in the
first position participants obtain an average median score of 69 points whereas, in
maps played in the third position, participants obtain an average median score of
79 points. We use a Kolmogorov-Smirnov (KS) two-sample test to compare them,
finding that obtained differences between score distributions are statistically sig-
nificant (p < 0.0001) in each map.

We can also compute a learning curve for each user by concatenating the
scores they obtain in each play and in each map, i.e., games are characterized
as a time series composed of the timestamps and scores obtained for each of
the 25 plays from each game. To understand these learning curves, we follow
a clustering-based approach that has been shown to be useful for examining learn-
ing behavior [152]. This approach uses Dynamic Time Warping (DTW) to com-
pute distances and construct a similarity matrix, where values express the level
of similarity between each pair of games. Using a Relaxed Minimum Spanning
Tree (RMST), we prune the weakest similarities and then use Markov Stabil-
ity [58, 123] to obtain clusters of games with similar temporal behaviors. Between
the produced multi-scale clustering, we use the one that yields a lower number of
clusters.

Figure 7.10 describes the centroids of the obtained clustering, composed of 4
clusters. This figure suggests that all users tend to improve their score as their
progress, and that this improvement is to a large extent dependent on their initial
scores.

Exploration and exploitation behavior.

Finally, we consider the extent to which exploration/exploitation behavior may be
affected by experimental conditions.

This game requires participants to balance exploration, i.e., seeking new high-
yield areas, and exploitation, i.e., reaping the rewards from high-yield areas al-
ready found. This behavior is, to some extent, observable. Two consecutive clicks
near each other can be interpreted as exploitation, while consecutive clicks far
from each other can be interpreted as exploration. We are particularly interested
in the extent to which these happen in the presence of a DSS, and on whether
they are fruitful in the sense of leading to high-score plays. Figure 7.11 com-
pares the euclidean distance between two consecutive clicks (in the X-axis) and
the obtained score (in the Y-axis). For clarity, we group distances and scores.
We observe that exploration (third column, “far”) often leads to low scores, while
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Figure 7.10: Centroids of clusters illustrating how the average score per play in-
creases as players learn during each game.

exploitation (first column, “near”) often leads to high scores.

Figure 7.11: Exploration/exploitation behavior and performance. We associate
clicks near each other (first column) with exploitation, and clicks far from each
other (third column) with exploration. Values indicate percentage of plays.

Examining the score profile of several games, we observe that many partic-
ipants spend the initial plays locating high-yield areas, and then switch to ex-
ploiting those. Comparing the proportion of exploration/exploitation behaviour
described in Figure 7.11 with that obtained without the DSS (figure omitted for
brevity), we do not find significant differences. Both matrices differ by less than
0.02 in terms of RMSE (Root-Mean-Square Error). Furthermore, we do not ob-
serve statistically significant differences in the performance of a given type of
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play (near/medium/far click). Binomial tests focused on determining whether the
probability of obtaining a high score changes for a given click distance, between
the no-DSS and the DSS conditions, yield p-values larger than 0.05. This suggests
that the DSS does not lead to a change in strategy by making participants more
willing to explore or more willing to exploit, but instead makes both exploration
and exploitation more efficient, proportionally.

7.6.2 Time

In this section, we evaluate the completion time across games.
For games played without a DSS, we measured a completion time of 37± 18

seconds (average and standard deviation) per map. Given there are 25 rounds,
this means users click on a cell roughly once every 1.5 seconds. In games with
the DSS, the completion time was 55 ± 40 seconds per map. This corresponds
to about one cell clicked every 2.2 seconds. It is clear that the DSS induces a
longer completion time, about 50% longer. The distribution of completion times
is shown in Figure 7.12, where we also observe that completion time is in general
correlated with map difficulty, and harder maps take longer to complete.

Figure 7.12: Completion time distribution by map. For representation purposes,
outlier games taking more than 100 seconds have been removed.
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Reliance on Machine Assistance

In this section, we use to approaches to measure the extent to which participants
are willing to rely on the DSS.

In the implicit approach, we measure the distance between the recommended
point and the cell selected by the user. This is depicted in Figure 7.13. Users
seem to correctly account for the accuracy of the system and rely less on the
low accuracy DSS than on the medium or high accuracy DSS. Indeed, in the low
accuracy condition, after the initial play users basically ignore the DSS – note that
the expected distance between two randomly-chosen points in a 32 × 32 square5

is approximately 0.52 · 32 = 16.6, which is close to what we observe in this
condition. In contrast, in the medium accuracy condition and particularly in the
high accuracy condition, they tend to click closer to the recommended point.

Figure 7.13: Average distance between recommendation and selected cell by
model quality. The horizontal line (E) is the expected distance between two ran-
dom points in a 32x32 grid

We also ask users to tell us explicitly their acceptance of the DSS by using the
Technology Acceptance Survey described in Section 7.4.2, which yields a score
between 0 (complete rejection) and 40 (complete acceptance). Results, shown in

Figure 7.14: Results of the exit survey on technology acceptance, by DSS accu-
racy.

Figure 7.14, indicate that most users have an intermediate level of acceptance (20-
30 points out of 40) and median acceptance differs by less than 5 points across
accuracy conditions. However, high acceptance is more likely in the high and

5Analytically, in a unit square this is
(
2 +
√
2 + 5 ln

(√
2 + 1

))
/15 ≈ 0.52140 . . .
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medium accuracy conditions than in the low accuracy condition, and differences
in the distribution of acceptance are statistically significant at p < 0.01.

7.7 Discussion
Our research question was “How do the characteristics of a decision support sys-
tem impact human performance, time to completion, and reliance?”

First, we observe that the platform and the experiments we designed allow
experimentation on the stated variables, as participants respond in an observable
manner to aspects such as the accuracy and bias of the received support. We also
observe that completing a game does not take much time, and that all participants
seem to learn how to increase their score after a few interactions. The decision
support we provide, when operating on its own, has lower performance than an
average human participant; however, the combination of human and machine in-
telligence in this game can outperform both the machine and the human acting on
their own.

Second, our experimental results suggest that, in this context, to a large extent,
participants behave rationally with respect to the accuracy of the DSS. Despite us
intentionally adding noise to the DSS recommendations, participants respond to
the average accuracy of the DSS, following more closely the high accuracy DSS
than the medium accuracy DSS, and to a large extent ignoring the low accuracy
DSS. This result is aligned with previous work in which participants correctly
calibrated their reliance according to DSS accuracy (e.g., [213, 214]).

Third, participants’ response to the presence of bias in this DSS is found to
be small and inconsistent, as they obtain slightly higher scores with the unbiased
DSS in the presence of low cost but slightly lower scores with the unbiased DSS
when the cost is higher. It might be possible that a larger bias might lead to a
more directly observable effect, but we remark that the high cost, biased condition
introduces a bias of 40 points per play (out of 100), which is fairly substantial.

Fourth, we observe that the presence of a DSS leads users to take about 50%
longer to complete each task. Previous work in decision-making for other tasks
also observed an increased completion time (e.g., [157, 188, 124]).

We observed no statistically significant differences among participants of dif-
ferent sociodemographics (gender, age, country, education, professional back-
ground) in terms of any of the dependent variables studied (score, time to comple-
tion, or reliance).

A result that is somewhat unexpected is that participants, despite apparently
ignoring the low accuracy DSS, in many cases express a moderate acceptance of
it in the exit survey. Previous work has found that a wrong recommendation is
less penalized if the final task performance is not harmed [212], but in our case
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participants indeed obtain a lower score with the low-accuracy DSS. This suggests
that, in practice, a malfunctioning DSS might not be detectable by users.6 This can
have severe consequences when deploying a DSS without taking into account that
its users might not be able to evaluate correctly the quality of the recommendations
or predictions.

7.7.1 Limitations
Decision-making processes in professional usage and/or in high-stakes scenarios
are different from those of inconsequential decisions, such as the game we have
designed. First, feedback is rarely available immediately, and indeed the process
of acquiring expertise in some domains, such as criminal justice, involves to some
extent observing the consequences of decisions made years ago [100]. Second,
while we compensate economically participants for executing their task, this is
to encourage attentiveness, and not to simulate a high-stakes situation. Third,
different professional contexts in which DSS are used (such as healthcare, human
resources, criminal justice) may encourage different practices with respect to the
DSS; they may also involve people with different backgrounds, including varying
degrees of numeracy and different levels of previous experience with algorithmic
support. Considering this, we believe DSS studies leading to domain-specific
designs require domain-specific experimentation. What we provide, in contrast,
is a platform to explore quantitatively user response to key aspects of a DSS at a
scale.

A further limitation is that while we release a platform in which parameters can
be varied by researchers, we do not provide mechanisms to, for instance, predict
the difficulty of a game. We provide three test maps, and notice that varying some
parameters of the map generator and of the DSS probably requires experimentally
fine-tuning other parameters. We recommend doing this empirically – as we have
done in this paper – with a group of participants.

Ethics and data protection.

Our research was approved by our university’s Ethics Review Board, including a
data protection assessment.

Reproducibility.

Our platform will be available as free software with the camera-ready version of
this paper.

6This was humorously dubbed the “Functional Indeterminacy Theorem” by John Gall [79].
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Chapter 8

CONCLUSIONS

8.1 Main contributions

This thesis addresses the problem of Algorithmic Fairness at different stages of
the ML life-cycle.

As a starting point, we showcased the feasibility of Poisoning Attacks to in-
duce Algorithmic Unfairness which corresponds to the first investigation done in
the topic. Our results prove that state-of-the-art attacks can be adapted to increase
existing biases in input data, leading to unfair outcomes on the predictive model
with a very limited amount of carefully crafted samples. This novel type of attacks
can be used to both introduce algorithmic unfairness, as well as for increasing it
where it already exists. This can be done even without access to the specific model
being used, as a surrogate model can be used to mount a black-box transfer attack.

Furthermore, we evaluated the professional biases across AI stakeholders by
using the theory of Economics of Conventions. Our results suggest important
differences in motifs and moral orders across developers, researchers and general-
public involved in the field of AI.

After, we evaluated model biases in two settings: first, a multi-sided market
scenario, assessing how disparities in predictive performance affect both sides of
the market, leading to disparities in user satisfaction in both sides of the market.
Second, we detected predictive biases when building a predictive model for de-
tecting Anorexia Nervosa using online posts. In this second setting, we assessed
state-of-the-art techniques to reduce predictive biases, discussing the trade-offs
between the distinct options.

Finally, we developed an experimental platform based on an online game to
study how user behavior varies when making use of a DSS, depending on its
characteristics. The results show how users in general benefit from the presence
of automatic help, and are able to effectively calibrate their reliance according
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to the capacities of the system. Nevertheless, we found many cases where users
expressed a moderate acceptance of low accuracy DSS while answering the opin-
ion survey. This result is interesting given the fact that users look to ignore the
suggestions of the low-accuracy model in practice.

Discussing more general findings, we acknowledge that existing biases can be
often mitigated, but there is a limit to this mitigation if the source of bias is not
known. Biases can be created in an unintended manner as seen in Chapter 6, but
the results of Chapter 3 prove that biases can also be created intentionally, what
would require recurrent monitoring in cases of continuous learning, where the ML
keeps learning while deployed.

The results on the analysis of professional bias (Chapter 4) and user-machine
interaction (Chapter 7) suggest that the subjectivity and preconceptions the user
might have before interacting with the system could play a role in the manner
she evaluates its the quality and capacities. As an example, a user guided by the
Industrial convention might accept any system that yields high-enough accuracy,
while another user that is more conditioned by the Civic convention would require
the system to be fair before accepting it. In this example, the first could easily
incur in overreliance in the machine capacities [87] while the latter could develop
Algorithmic Aversion [65]

8.2 Recommendations for practitioners

Bias in the ML life-cycle occurs at different stages. Removing all possible sources
of inequalities becomes a nearly impossible task for practitioners, hence, mitigat-
ing all possible bias must be an objective of any data-oriented project. The results
of this thesis and the background and related work highlight the necessity of not
only accounting for predictive performance overall, but comparing it across demo-
graphic groups to detect potential discrimination before deploying ML systems in
production.

8.2.1 Poisoning attacks

The shown feasibility of poisoning attacks on Algorithmic Fairness, there is a need
for accounting for such cases in at least two possible scenarios. In one hand, there
is a need for approaches that are robust against such a type of attacks. Although
the situations where an attacker can have enough knowledge about the model and
access to the training data at the same time are not so common, the strong effect
that can be caused by adding a small percentage of perturbed samples requires
special attention. In the other hand, our results show how the worst-case scenario
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in which errors committed during the data labeling phase might lead. In this case,
intention to harm is not required, but still might lead to strongly biased predictions.

8.2.2 Professional biases
Although our work on professional biases is just an initial effort on the topic,
it clearly highlights that different stakeholders give value to AI in very different
forms. An initial step towards addressing this issue requires first to acknowledge
it. Fostering the inclusion and diversity of the teams involved in the research and
development of AI systems would help into accounting for more diverse points of
view. Involving all types of stakeholders during the creating of AI systems can
help into accounting for all values, moral principles and orders of worth of the
people affected by them.

8.2.3 Algorithmic assessments
The results obtained during the Algorithmic Assessment detailed in Chapter 5
show how the incorporation of ML techniques might not benefit equally all de-
mographic groups. There is a need for accounting for this, while at the same time
considering if the benefits of including the system exceed the harms and inequali-
ties it might cause. Additionally, our results show how the presence of a trade-off
between accuracy and fairness is very common. Whereas maximizing the first
has been the main focus of most of the advancements in the ML field, mitigat-
ing unfairness typically requires lowering the overall performance of the system.
Although it might look undesirable, there as several use cases where the risk of
using biased ML models exceeds the benefits of slightly higher accurate ones.

8.2.4 Algorithmic unfairness mitigation
The work done with the Anorexia Nervosa dataset shows the limitations of state-
of-the-art techniques for bias mitigation. As shown in our analysis, the preference
for one solution over the rest might depend on the context of the application, as
little improvements in one fairness criteria often lead to worsen results of others.

Also, the analyzed case corresponds to a particular example, where the demo-
graphic group with higher prevalence in the dataset (females) was obtaining lower
predictive performance. Nevertheless, previous work refers to Sample Size Bias
[40] as the main root-cause of the subsequent performance disparities yielded by
ML systems. Our observations suggest that accounting for a number of samples
might not always be enough to equalize predictive performance. With the cause
of this effect being that the selected features were not equally predictive across
genders, it suggests that considering data separability might be a need.
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8.2.5 Interaction bias

Our results suggest that in the low-stake scenario where the experimentation is
conducted, user’s performance benefits from the presence of a DSS system, even
in the case that its predictive performance is low. The low-complexity nature of
the analyzed scenario facilitates that users adapt their reliance to the quality of the
received predictions, what needs to be accounted to avoid Algorithmic aversion
[65] and Overreliance [87] in further versions of the same system. Additionally,
we also observed that users require more time to take the decision with the pres-
ence of the DSS, what might be relevant in scenarios where the time to take the
decision is limited as the cases described by Cummings et al. [54].

8.3 Future work

There are several future directions that could potentially be motivated by this the-
sis. Below, we list several research opportunities and briefly discuss their applica-
bility.

8.3.1 Poisoning attacks

Studying adversarial attacks on algorithmic fairness can help to make machine
learning systems more robust. Additional type of models such neural nets and/or
other data sets can be considered in the future to extend the work proposed here.
Although experiments in this paper are done using a specific technique based on a
poisoning attack, other techniques can be certainly considered. Other approaches
such as causality-based techniques could be explored as future work.

8.3.2 Professional biases

The approach presented in the corresponding chapter is the first contribution to-
wards building an automatic text classifier of EC. The use of automatic models
to perform the analysis enables the possibility of considering large amounts of
information when accounting the conventions in a given dataset. This approach
could be used in future analysis to extract conclusions in a variety of domains
where prevalence of the EC needs to be studied. To facilitate the re-usage of this
work, a repository containing the implemented code and the collected data has
been published.

This work focused on three data sources which we considered relevant to re-
flect different perceptions about AI, i.e. the perspective of researchers, developers
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and the general public. In the future, it would be interesting to study other types
of interactions in data sources such as newspapers, online videos and chats.

In further steps, one focus will aim to detect and analyze common conflicts in
software development and their underlying (assumable conflicting) conventions,
beyond the already obvious problems of coordination between open source- and
profit oriented AI development. With this, we hope to contribute to a more plural
understanding of AI research and development, considering underlying moral reg-
isters which influence the motivations, objectives, processes and values of these
projects.

8.3.3 Algorithmic assessments and bias mitigation
The combination of knowledge extracted from the use cases described in this doc-
ument and the advancements in the formalization and standardization of algorith-
mic assessments and audits enable to facilitate the analysis of future use cases in
novel domains. Additionally, in case new instances of algorithmic bias or unfair
performance disparities were found in new cases, existing or novel bias mitigation
procedures could be applied to these use cases.

8.3.4 Interaction bias
We offer an expressive platform that is useful for various types of research; in-
deed, we encourage researchers to use this platform, and we make freely available
its source code. As future work, we would like to consider situations that induce
over-reliance or under-reliance in the DSS. We would also like to study whether
communicating the accuracy and confidence of the DSS, or using other mecha-
nisms for transparency or explainability can prevent these situations, or lead to
increased user performance. Another line of research we would like to explore is
the response of participants to DSS failures, such as a sudden drop in accuracy,
both in terms of how they perform and how they perceive the system.

8.4 Reproducibility
The code developed within this thesis uses the following Python libraries:

1. Pandas, NumPy and Spark for data management

2. Scikit-learn and PyTorch for training machine learning models

3. IBM AIF360 for quantifying and mitigating unfairness in input data and
models
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Open-source code, data and models produced during the development of this the-
sis are available at: http://www.github.com/dsolanno/phdthesis2022
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